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Outline
1. Background and motivation

I Deletion–contraction invariants of graphs

I The Tutte polynomial

I Universality of the Tutte polynomial

2. Computing the Tutte polynomial

I Deletion–contraction requires exp(Ω(n log n)) worst
case time

I Our contribution: Algorithm with runtime exp(O(n))

I Assuming the Exponential Time Hypothesis, optimal
up to constantsa

a) R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63 (2001) 512–530
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Deletion–contraction

I Let G be an undirected graph and let e ∈ E be an edge

I Let G\e be the graph obtained from G by deleting e

I Let G/e be the graph obtained from G by contracting e;
that is, by identifying the ends of e and then deleting e

Example e

G

G/eG\e
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An example invariant: the chromatic polynomial

Let G be an undirected graph with n vertices

Denote by PG(t) the number of proper colorings of the vertices
of G with t = 1, 2, . . . colors

Theorem
For all e ∈ E,

PG(t) =


tn if G has no edges;

0 if e is a loop;

(t − 1)PG/e(t) if e is a cut-edge;

PG\e(t)− PG/e(t) otherwise
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Example: PG(t) with deletion–contraction
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An example invariant: the reliability polynomial

Denote by RG(p) the probability that no connected component
of G is disconnected if each edge is deleted independently with
probability 0 ≤ p ≤ 1

Theorem
For all e ∈ E,

RG(p) =


1 if G has no edges;

RG\e(p) if e is a loop;

(1− p)RG/e(p) if e is a cut-edge;

pRG\e(p) + (1− p)RG/e(p) otherwise

Petteri Kaski PhysDIS workshop, NORDITA, Stockholm, Sat May 17, 2008



7

An example invariant: the Ising–Potts partition function
For q = 2, 3, . . . and b = exp(−β) > 0, let

ZG(q, b) =
∑

s:V→{1,2,...,q}

exp
(∑

e∈E

δe(s) log b
)

where δe(s) = 1 if s assigns the ends of e the same value;
otherwise δe(s) = 0

Theorem
For all e ∈ E,

ZG(q, b) =


qn if G has no edges;

bZG\e(q, b) if e is a loop;

(q − 1 + b)ZG/e(q, b) if e is a cut-edge;

ZG\e(q, b) + (b − 1)ZG/e(q, b) otherwise

Petteri Kaski PhysDIS workshop, NORDITA, Stockholm, Sat May 17, 2008



8

The (classical) Tutte polynomial

I Let G be an undirected graph with n vertices, m edges,
and c connected components

I The Tutte polynomiala,b of G is the two-variable
polynomial

TG(x , y) =
∑
F⊆E

(x − 1)c(F )−c(y − 1)c(F )+|F |−n,

where c(F ) is the number of connected components in the
spanning subgraph of G with edge set F

a) W. T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc. 43 (1947) 26–40
b) W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J.

Math. 6 (1954) 80–91
c) A. D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and

matroids, Surveys in Combinatorics, 2005, Cambridge University Press, 2005,
pp. 173–226
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Example: the Petersen graph

1 y y2 y3 y4 y5 y6

1 0 36 84 75 35 9 1
x 36 168 171 65 10

x2 120 240 105 15
x3 180 170 30
x4 170 70
x5 114 12
x6 56
x7 21
x8 6
x9 1
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The Tutte polynomial with deletion–contraction

Theorem
For all e ∈ E,

TG(x , y) =


1 if G has no edges;
yTG\e(x , y) if e is a loop;
xTG/e(x , y) if e is a cut-edge;
TG\e(x , y) + TG/e(x , y) otherwise
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Universality of the Tutte polynomial

Theorem (Recipe Theorem a,b)
Assume that f is a function from graphs to the multivariate
polynomial ring Z[α, β, γ, λ, µ] such that, for all graphs G and
e ∈ E,

f (G) =


αn if G has no edges;
βf (G\e) if e is a loop;
γf (G/e) if e is a cut-edge;
λf (G\e) + µf (G/e) otherwise.

Then
f (G) = αcλc+m−nµn−cTG

(
γµ−1, βλ−1)

a) T. H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer.
Math. Soc. 171 (1972) 235–282

b) J. G. Oxley, D. J. A. Welsh, The Tutte polynomial and percolation, Graph Theory
and Related Topics (J. A. Bondy, U. S. R. Murty, Eds.), Academic Press, 1979,
pp. 329–339
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Corollary (Chromatic polynomial)
PG(t) = (−1)n−c tcTG

(
1− t , 0

)
Proof.
Use the recipe α = t , β = 0, γ = t − 1, λ = 1, µ = −1

Corollary (Reliability polynomial)
RG(p) = pc+m−n(1− p)n−cTG

(
1, 1/p

)
Proof.
Use the recipe α = 1, β = 1, γ = 1− p, λ = p, µ = 1− p

Corollary (Ising–Potts partition function)
ZG(q, b) = qc(b − 1)n−cTG

(
q/(b − 1) + 1, b

)
Proof.
Use the recipe α = q, β = b, γ = q−1 + b, λ = 1, µ = b−1
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Computing the Tutte polynomial

I Given G, computing TG(x , y) is a #P-hard problema,b

I It is also very difficult to approximate TG(x , y) on most
points (x , y)c

I Deletion–contraction computes TG(x , y) for a connected G
in time τ(G)nO(1)

I The number of spanning trees τ(G) ≤ nn−2, with equality
for complete graphs

a) F. Jaeger, D. L. Vertigan, D. J. A. Welsh, On the computational complexity of the
Jones and Tutte polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990) 35–53

b) D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge Univer-
sity Press, 1993

c) L. A. Goldberg, M. Jerrum, Inapproximability of the Tutte polynomial, Proceedings
of the 39th Annual ACM Symposium on Theory of Computing (San Diego, CA,
June 11–13, 2007), Association for Computing Machinery, 2007, pp. 459–468
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Our contributiona

I An algorithm with 2nnO(1) running time

I Three ideas:
1. Suffices to enumerate spanning subgraphs of G by

I number of connected components and

I number of edges

2. Enumerate via recursion over induced subgraphs

3. “Fast subset convolution” to expedite the recursion

a) A. Björklund, T. Husfeldt, P.K., M. Koivisto; arxiv:0711.2585
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First idea: enumerate spanning subgraphs

I Denote by sk ,l(G) the number of spanning subgraphs of G
with

I k connected components, and
I l edges

I Collecting terms,

TG(x , y) =
∑
F⊆E

(x − 1)c(F )−c(y − 1)c(F )+|F |−n

=
n∑

k=1

m∑
l=0

sk ,l(G)(x − 1)k−c(y − 1)k+l−n

I Thus, it is trivial to compute TG(x , y) given sk ,l(G) for all k , l
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Second idea: recursion on induced subgraphs

I Denote by G[W ] the subgraph induced by W ⊆ V in G

I Suppose we know sk ,l(G[U]) for all ∅ ( U ( W and all k , l

I A two-step recursion solves sk ,l(G[W ]) for all k , l :

1. For k = 2, 3, . . . , n(G[W ]) and l = 0, 1, . . . , m(G[W ]), set

sk ,l(G[W ]) =
1
k

m(G[W ])∑
t=0

∑
∅(U(W

s1,t(G[U])sk−1,l−t(G[W\U])

2. For k = 1 and l = 0, 1, . . . , m(G[W ]), set

s1,l(G[W ]) =

(
m(G[W ])

l

)
−

n(G[W ])∑
k=2

sk ,l(G[W ])

Petteri Kaski PhysDIS workshop, NORDITA, Stockholm, Sat May 17, 2008



17

Third idea: fast subset convolution

I A direct evalution of the recursion takes Ω(3n) time

I The bottleneck is

sk ,l(G[W ]) =
1
k

m(G[W ])∑
t=0

∑
∅(U(W

s1,t(G[U])sk−1,l−t(G[W \ U])

I This can be expedited to 2nnO(1) time using fast subset
convolutiona

(f ∗ g)(W ) =
∑

U⊆W

f (U)g(W \ U)

a) A. Björklund, T. Husfeldt, P. K., M. Koivisto, Fourier meets Möbius: fast subset
convolution, Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting (San Diego, CA, June 11–13, 2007), Association for Computing Machinery,
New York, 2007, pp. 67–74
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Our result in more detail

Denote by σ(G) ≤ 2n the number of connected vertex sets in G

Theorem (Björklund, Husfeldt, K., Koivisto a)
The Tutte polynomial of an n-vertex graph G can be computed
(a) in time and space σ(G)nO(1);
(b) in time 3nnO(1) and polynomial space; and
(c) in time 3n−s2snO(1) and space 2snO(1) for any integer s,

0 ≤ s ≤ n.

a) A. Björklund, T. Husfeldt, P.K., M. Koivisto; arxiv:0711.2585
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