
  

A minimal model for the onset of 
congestion in networks

Luca Dall'Asta, ICTP- Trieste  (Italy)Luca Dall'Asta, ICTP- Trieste  (Italy)

In collaboration with: 

D. De Martino, SISSA - Trieste  (Italy),
G. Bianconi, ICTP  - Trieste (Italy),
M. Marsili, ICTP – Trieste (Italy)

Workshop on 
“Physics of Distributed Information Systems” , 

NORDITA, Alba Nova, Stockholm (Sweden)
(15 May 2008)



  

IntroductionIntroduction

Empirical facts:    
                     
    -   experimental measures of congestion in communication
        networks are very difficult

    -   TCP/IP protocols are conceived in such a way to avoid 
         the onset of congestion

              
                 - computer scientists are interested in the optimization
                   of the routing algorithm

                 - statistical physicists are interested in understanding
                   how congestion can occur



  

IntroductionIntroduction

Numerical simulations (main ingredients):    
                     
    -   networked structure (e.g. Internet maps)

    -   define an information exchange process
         (packets are created at rate p and removed when a given
          destination is reached)

    -   define a routing protocol (static, dynamic, ...) 
 
    -   a queue in each node (limited or unlimited capacity)
              
                 
              define an ORDER PARAMETER to measure congestion

 p = limt∞

N t−N t 
 p



  

Free-flow vs. Congested phaseFree-flow vs. Congested phase

First attempts:  Ohira & Sawatari,PRE 58 198 (1998)
                         Takayasu et al. (1996-2000)  

Breakthrough:  Echenique, Gomez-Gardenes, & Moreno, EPL 71, 325 (2005)

                       - traffic on the Internet map (AS level)

                       - mixed routing rule:  shortest path + congestion avoidance

                       - each time step every node sends one packet to a neighbor

                         Phase Transition from free-flow to congested phase

                            continuous if h = 1,   discontinuous if h < 1 

i  j k =hd ik1−hni
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Free-flow vs. Congested phaseFree-flow vs. Congested phase

1) Existence of congested phase:

     number of packets arriving at node i is on average 

 
    where B is the betweenness centrality

    one node is congested if  

   
    Sreenivasan et al (Phys. Rev. E 75, 036105 (2007) ):    
    existence of “structural bottlenecks” independent of the routing process

                                     the system will eventually be congested !!

p Bi
N−1

B i=∑s≠t

 st i 

 st
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1 pc=
N−1
Bmax



  

Free-flow vs. Congested phaseFree-flow vs. Congested phase

2) Continuous phase transition:

     on hierarchical trees, Guimerà et al. PRL 86, 3196 (2001) 
     showed that above pc, 

  
3) Discontinuous phase transition:

    is due to a cooperative effect, packets move along “allowed paths” like in    
    kinetically constrained models
    

   

 when paths do not percolate anymore                  jump into a jammed phase   

=1−
pc
p



  

Our modelOur model

A minimal model of routing:  
 
  - can be studied analytically, 

  - all main features defining congestion scenario
              
Rules: 
   
● local routing (random walks + congestion avoidance bias)

● no source and destination, but creation rate p and deletion rate μ
  (deletion does not apply when packets are in the queue)

● node capacity n*

Goal:     1) recursive equation on a given graph

              2) average behavior for an ensemble of graphs



  

Equations for single graphs (I)Equations for single graphs (I)

Remark: 
    if we assume that node probability distributions are factorizable,
    then, in the stationary state, Pi(n) are (double) exponential

wni n i1=p1−1−x i∑ j∈i

1−n j ,0

k j

wni n i−1=1−


k i
∑ j∈i

x j

for 

for 

n i≥0

n i0 x i=ni−ni
∗

Node state is fully defined by only two variables in [0,1]

q i=Prob {n i=0}=P i 0

i=Prob { x i=1 }



  

Equations for single graphs (II)Equations for single graphs (II)

Equation for the queue length: 

ṅi=p1−1− i∑ j∈i

1−q j
k j

−1−q i[1− 
k i
∑ j∈ i

 j ]
Limit for  n* →∞,     three classes of nodes:

  - congested

  - free

  - fickle

i=1, qi=0 ṅi0

i=0, ṅ i=0 q i=Q i ,q

q i=0, ṅ i=0 i=C i  ,q 



  

Equations for single graphs (III)Equations for single graphs (III)

Recursion relations that can be solved on any specific graph

i=max {0,min [1,C i  ,q ] }

q i=max {0,min [1,Qi  ,q  ] }

If a fixed point exists, we get the order parameter from 

 p =
1
p∑i

ṅi
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Equations for graph ensemblesEquations for graph ensembles

The analysis can be extended to “ensembles of graphs”, 
  - consider uncorrelated random graphs with degree distribution P(k)
  - study the master equation for P(n|k)

Now, 

Increasing p,   ∃ k* such that 

 - for k < k* ,  uncongested,                determined from master eq.

 - for k > k* ,  congested, 

 - for k*, 

We obtain a set of three coupled equations for                  and k*

from which  we get k*(p),  then  ρ

ik q i qk

qk ,k

qk=0 ,k=1

qk≃0 ,k=1, 〈 ṅk 〉=0

〈q 〉 , 〈〉 ,



  

Results for graph ensembles (I)Results for graph ensembles (I)

P(k) ≈ k-3

μ = 0.2
η= 0.2, 0.8
n* = 10,



  

Results for graph ensembles (II)Results for graph ensembles (II)

P(k) ≈ k-3 
μ = 0.2
η =  0.8
n* = 10,



  

Results for graph ensembles (III)Results for graph ensembles (III)



  

ConclusionsConclusions

● we have defined a minimal model of traffic flow on networks

● the model is analytically solvable (single graph, ensembles)

● it presents all features of observed congestion phenomena:
  continuous/discontinuous characters of the phase
  transition are understood as effects of the routing rule

To do:
 
● Investigate the relation with jamming transitions in granular
  media and k-core percolation
  
● focus on single node activity  


