

Results from Low-Energy Neutrino searches for Dark Matter in the Galactic Center with IceCube

Samuel Flis

Department of physics Stockholm University

Dark Matter Working Group Meeting January 28 2014

Halo Model Uncertainties

• Burkert

- Fits observations best
- Flattest profile

• NFW

Still not excludedThe 'standard' one

Halo Model Uncertainties

• Burkert

- Fits observations best
- Flattest profile

• NFW

Still not excludedThe 'standard' one

Outline

- Introduction
- IceCube
- Analysis
- Results

Introduction

• Neutrino signal from the Galactic Center

From what?

- Annihilating Dark Matter (WIMPs)
 - Assumption: WIMPs annihilate to SM particles which in turn decay to neutrinos

Measuring or putting a limit on the averaged velocity cross-section

$$\frac{\mathrm{d}\,\Phi_{\nu}}{\mathrm{d}\,E} = \frac{\langle\sigma\nu\rangle}{2} J(\Psi) \frac{R_{sc}\rho_{sc}^{2}}{4\pi m_{\chi}^{2}} \frac{\mathrm{d}\,N_{\nu}}{\mathrm{d}\,E}$$

Millenium simulation

Introduction

We believe that the Milky Way is WIMPs: Weakly Interacting embedded in a dark matter halo. Massive Particles, χ . Dark matter density depends on If majorana \rightarrow Self the distance from the center. annihilation. Tres generacion: ŝS 11**W** е log S (M²_{sun}kpc⁻⁵sr⁻¹) Millenium simulation SM particles decay to neutrinos $J(\Psi)$ is the line of sight integral Usually described analytically by different halo models. $R_{sc}\rho_{sc}^2\,\mathrm{d}\,N_{\nu}$ $d\Phi_{\underline{v}}$ $\langle \sigma v \rangle$ (Ψ) d *E* 100GeV bbba v energy spectrum ⊥≂ 100GeV bbi 100GeV bbba 2. 100GeV bbba +v. 100GeV b 100GeV bbb v. 100GeV bbba anti-)neutrino energy at source [GeV

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

IceCube detector

IceCube detector

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Analysis

Strategy

Event selection

- Reduce the number of events to a manageable amount
- Select events with good quality
- Analysis
 - Maximum likelihood analysis

Signal:

Low energy Neutrinos from WIMP annihilations:

-Down-going neutrino events. -Neutrino energy :10 GeV – 1 TeV -Rate: ??< ~4µHz [based on limits]

Backgrounds:

Atmospheric Muons:

-Dominating but reducible -Down-going -Rate: ~3kHz (300 million per day)

Atmospheric neutrinos:

-Irreducible -Almost isotropic -Rate: 0.01Hz (~1000 per day) At the South Pole the Galactic Center is always seen at a zenith of 61°

Event Selection: Strategies

- Down-going events
- Starting events (inside DeepCore)
- Linear cuts
- Vetos
- Split sample (high and low energy)
 - Two BDTs (Boosted Decision Trees)

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Starting events must be Signal: neutrino induced events. Low energy Neutrinos from WIMP Muons can, however, annihilations: imitate starting events! -Down-going neutrino events. -Neutrino energy :10 GeV – 1 TeV -Rate: ??< ~4µHz [based on limits] IceCube **Starting Events Backgrounds:** veto region **Atmospheric Muons:** -Dominating but reducible -Down-going -Rate: ~3kHz (300 million per day) Atmospheric neutrinos: -Irreducible -Almost isotropic -Rate: 0.01Hz (~1000 per day)

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

page 11

DeepCore

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Two BDTs trained:

- On low energy signal
- On high energy signal

BDT cut is determined by the sensitivity of the ML-analysis

For each annihilation channel and WIMP mass the BDT with the best sensitivity is chosen.

Analysis- Maximum Likelihood

A ML analysis is performed incorporating the shape and the number of events in the search window. $b_{_{\rm exp}}$ expected background

- *n* number of observed events
- μ number of signal events

Signal pdf

scrambled background

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Halo Model Uncertainties

• Burkert

- Fits observations best
- Flattest profile

• NFW

Still not excludedThe 'standard' one

Results

Limits at 90% CL using Feldman Cousins procedure Note: no systematic errors included

Most competitive among IceCube analyses for soft channels and low u-energies

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Results

Limits at 90% CL using Feldman Cousins procedure Note: no systematic errors included

Most competitive among IceCube analyses for soft channels and low u-energies

OKC Dark Matter WG-Meeting, Jan 28 2014 S. Flis for the IceCube Collaboration

Summary

- First IceCube analysis looking at Galactic Center for low WIMP masses (<100 GeV)
- Sensitivity has improved up to 4 orders of magnitude compared to previous IceCube analyses.
- New methods developed to reject atmospheric muon background.
- Systematic studies almost finished.
- High energy analysis completed soon.
 - Limits of the two analyses will be combined.

Thank You

Thank You for your attention!

Spaatind 2014, Skeikampen, Norway, Jan 2-7 2014 S. Flis for the IceCube Collaboration

