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Water droplets in turbulent rain clouds
Forces on small droplet
Gravity (Newton’s second law):

                           density of water droplet
                           gravitational acceleration
                           particle size
Friction (Stokes’ law):

where
                                    (          )
                            viscosity
                            velocity of turbulent air in cloud
                            droplet position
                            droplet velocity
                
                   

ρp

g

ν

u(r,t)
r
v

µ = 6πρpνa

F S = µ
(
u(r,t)−v

)
a

F G = m g= 4πρp
3 a3g

F G

F S

a

F= mγ



Kubo number (dimensionless flow strength,                     )

Model

Particle equation of motion (dedimensionalized with flow scales)

Spherical droplets move independently in stationary incompressible, 
homogeneous, isotropic random velocity field             .
Single-scale flow: typical length scale    , time scale    and speed      .

particle position

Question: How do particles cluster within this model?

particle velocity
direction of gravity

r

ṙ = Kuv

v̇ = (u(r, t) − v)/ St+F ĝ

η τ u0

u(x, t)

v

Ku = u0τ/η

ĝ

Parameters
Ku

St

F

Stokes number (particle inertia)
Inverse Froude number (gravity strength)
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Clustering mechanisms (          )

Droplets avoid regions of high 
vorticity and gather in region of 
high strain.

Maxey, J. Fluid Mech. 174, 441, (1987)

F = 0

Strong correlation between 
instantaneous flow structures and 
particle positions.

Clustering as a net effect of many 
small deformations of volumes
spanned by close-by particles.

White-noise modelling possible. 
Dynamics described by single 
parameter:  
(              and              so that    
constant)

ε
2
∼ Ku

2
St

Mehlig & Wilkinson, PRL 92 (2004) 250602
Duncan et al., PRL 95 (2005)
Wilkinson et al., Phys. Fluids 19 (2007) 113303

Maxey centrifuge effect Multiplicative amplification

Particle positions are uncorrelated 
to instantaneous structures in the 
flow.

Ku → 0 St → ∞ ε



Quantification of clustering (         )

When            and not too large, the dynamics is:
- chaotic (positive maximal Lyapunov exponent)  

- compressible (sum of two maximal Lyapunov exponents negative)

λ1 > 0

Lyapunov exponents              describe rate of contraction or expansion of 
small length element       , and area element        of particle flowδrt δAt

J. Sommerer & E. Ott, Science 259 (1993) 351

λ1 > λ2

λ1 + λ2 < 0

St > 0

Fractal dimension dL ≡ 2 −

λ1 + λ2

λ2

d = 2

Kaplan & Yorke, Springer Lecture 
Notes in Mathematics 730, 204, (1979)

λ1 = lim
t→∞

t
−1 ln(δrt)

λ1 + λ2 = lim
t→∞

t
−1 ln(δAt)
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Particles reach a terminal ‘settling velocity’

Deterministic dynamics with gravity
Dynamics in the absence of u

Deterministic solution

The deterministic solution is important if             
Relative motion between two particles is only affected by gravity 
through the   -dependence in            . Gravity is expected to alter 
correlations between flow and particle trajectories.

r u(r, t)

ṙ = Kuv

v̇ = (u(r, t) − v)/ St+F ĝ

v = vs + (v0 − vs)e
−t/ St

vs ! 1

r = r0 + Kuvst + Ku St(v0 − vs)(1 − e
−t/St)

vs ≡ FSt ĝ
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Large-    dynamics
Deterministic solution                           with settling velocity

When                                  is large 
the effective correlation time 
approaches white noise.

St

t = t1

t = t2

r = r1

vs

vs

Spatial decorrelation becomes 
faster than time decorrelation.
Single-particle correlation function at 
two different times (our random flow)

0 1 2 3
10−3

10−2

10−1

100 Ku = 1 F = 1

St = 10

St = 1

r ≈ r0 + Kuvst vs = F St

∼ e
−|t1−t2|−(r1−r2)

2/2

∼ e
−|t1−t2|−Ku2 v2

s
(t1−t2)

2/2

G ≡ Ku vs = Ku F St

〈u(r1, t1)u(r2, t2)〉

〈φ
(r

1
,t

1
)φ

(r
2
,t

2
)〉

Shown as           in figure.

r ≈ r1 + Kuvs(t2 − t1)

∼ e
−t

t



                                        ,                                   ,                             .

Langevin model
Langevin equation for separations                       and relative
velocities                                   (                )

Increments       are Gaussian white noise with                 and
                                                           with          obtained by 
integration of the effective correlation functions

                                                                                      .

δR′
= V

′ δt′ , δV ′
= −V

′ δt′ + δF .

δF 〈δF 〉 = 0

〈δFiδFj〉 = 2δt
′
Ku

2
St ΣklDik,jlR

′

kR
′

l Dik,jl

D21,21 =
3

√
8G

F
[

1
√

2G

]

D12,12 =
G2

− 1

2G4
+

D21,21

3G4

D11,11 = D22,22 = −D11,22 = −D22,11 = −D12,21 = −D21,12 =
1

2G2
−

D21,21

3G2

F [x] ≡
√

πe
x
2

erfc(x)

Dik,jl ≡
1

2

∫

∞

−∞

dt

〈

∂u′

i

∂r′k
(r′(t′), t′)

∂u′

j

∂r′l
(0, 0)

〉

We obtain (               )

Gravity introduces anisotropy (                         ).D12,12 != D21,21

ĝ = −ey

R
′
= r1 − r2

V
′ = Ku St(v1 − v2) t′ = t/ St

Two parameters:                     and                     .ε
2
∼ Ku

2
St G = Ku F St



Langevin model, large-    asymptote
Diagonalise and rescale noise

For a given large value of     define an effective Kubo number          
in    so that the two parameters are equal

                                                                         .

St Kueff

G

A± ≡

(

D21,21

D12,12

)1/4
∂u1

∂r2
±

(

D12,12

D21,21

)1/4
∂u2

∂r1

For large values of                      the dynamics is governed by a single 
parameter                                             .D++ = D

−−
∼ Ku

2
St/G3/2

Compare this parameter to the parameter of the           white-
noise model                   .ε

2
∼ Ku

2
St

Kueff ∼

{

Ku St small
Ku1/4/(FSt)3/4 St large

ε
2

         approximately maps the           model with some value of       
onto the           model with Kubo number         .
Kueff F != 0

F = 0

F = 0

Ku

Kueff

G = Ku F St
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∼ 2 − 4Ku
2

effSt

Kueff ∼

{

Ku St small
Ku1/4/(FSt)3/4 St large



Clustering due to preferential sampling
As we have seen, gravity tends to enhance clustering due to
multiplicative amplification for large values of     .St

What is the effect of gravity on preferential sampling (e.g. Maxey 
centrifuge effect) and anisotropy for general values of    ?F

To answer this question we make a series expansion around 
deterministic trajectories.

                               +   gravity     =     ?



Trajectory approximation (          )

with deterministic part
                                                                                         .

F != 0
Solve equations of motion (dimensionless units)
                                ,
implicitly

rt = r̃t +
Ku

St

∫ t

0
dt1

∫ t1

0
dt2e

−(t1−t2)/St
u(rt2,t2)

ṙ = Kuv v̇ = (u(rt, t) − v)/St + F ĝ

r̃t = r0 + Kuvst + KuSt(v0 − vs)(1 − e
−t/St)

Expand the flow             around     and iterate expansion.u(rt, t) r̃t

Insert the expanded flow into the equation for the velocity gradient
matrix                :                                                       .Z ≡ ∇v

T
Ż = (∇u

T(rt, t) − Z)/St − KuZ
2

Expand this equation around the     -term, solve implicitly and iterate
to obtain an expansion of    .Z

Z
2

Evaluate average compressibility               along particle trajectories to de-
termine how areas of close-by particles develop (                                    )

〈∇ · v〉∞
λ1 + λ2 = Ku〈∇ · v〉∞



with                      ,
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Preferential sampling of
We find:
〈∇·v〉∞ =

3Ku3

4St5G8

{

2G
2St3(5+4St+3St2−G

2St2(1+St))+(1+St)3(2(1+St)2−G
2St2(St−3))F

[

1 + St√
2StG

]2

−
√

2GSt2(13+17St+15St2+3St3+G
2St2(4−St−3St2)+G

4St4)F
[ 1 + St
√

2StG

]

−4GSt(1+St2(2+St2+G
2))F

[ 1

G

]

−2
√

π(1+St2)G(−2+St2(−2+(−3+St2)G2))

∫

∞

0

dtexp
[

G−2
−t/St−G2t2/4

]

erfc
[

G−1+Gt/2
]}

Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|〈∇ · v〉∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

F [x] ≡
√

πe
x
2

erfc(x)G = Ku F St



As            known Maxey result is recovered
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Ku = 0.1

∇ · v

St

∼ St
2

∼ St
−2

|〈∇ · v〉∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

Small    :St 〈∇ · v〉∞ ∼ 3Ku3St2(4G − 6G3 − (4 − 4G2 + 3G4)F [G−1])/(4G5)

〈∇ · v〉∞ ∼ −6Ku
3
St

2
G → 0

2 4 6 8 10

!6

!5

!4

!3

!2

!1

0

G

∼ 〈∇ · v〉∞/(Ku3St2)
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Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|〈∇ · v〉∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

GSmall    :

〈∇·v〉∞ ∼ −6Ku3St2
1 + 3St + St2

(1 + St)3
+9Ku3

G
2St2

1 + 5St + 12St2 + 20St3 + 4St4

(1 + St)5

As            earlier results are recoveredG → 0

Gustavsson, Mehlig EPL 96 (2011)
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Ku = 0.1 Ku = 1

∇ · v

St St

∼ St
2

∼ St
−2

|〈∇ · v〉∞|

F = 0 F = 0.1 F = 1 F = 10 Theory

Large     ,     : 〈∇ · v〉∞ ∼ −3Ku3St
√

2π/(4G3)St G

Same parameter-dependence as predicted by the Langevin model: 
KuSt〈∇′ · v′〉∞ ∼ −3

√
2π/4[Ku2St/G3/2]2



Complication: Steady-state averages                  in turn depend 
on      and contain secular terms.

Find      by averaging over      using its steady-state distribution.

with                       gives to lowest order in  

Maximal Lyapunov exponent λ1

Similar expansion for     usingλ1

Ku

depends on the initial angle    between gravity and the separation 
between two close-by particles.

λ1

R̂t ≡ Rt/|Rt|

λ1 = lim
t→∞

1

t
ln

|Rt|

|R0|
= lim

t→∞

Ku

t

∫
t

0

dt
′
R̂

T

t′
Zt′R̂t′

φ0

ĝ

φ

+
1
√

2

{

G2(1+3G2)−(1+12G2+9G4) cos2 φ0+2(1+6G2+3G4) cos4 φ0

}

F
[

1
√

2G

] ]

λ1 =
Ku2

2G5

[

− G3 + G(1 + 11G2) cos2 φ0 − 2G(1 + 5G2) cos4 φ0

φ0

We find this distribution from the moments                 with p = 1, 2, . . .〈cos
2p φ〉∞

〈cos
2p φ〉∞

φ0
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Theory

Self-consistency solution to remove the secular terms gives
recursion relations for the moments                 .

∼

S
t −

3/
2

λ1

Ku = 0.1

These recursions can be solved if series expanded in small                    .
We find the corresponding probability distribution of   

Padé-Borel resum this series to find the theory plotted below

〈cos
2p φ〉∞

P (φ) =
2

π

[

1 + cos(2φ)G2 +

(

1

4
cos(4φ) − 5 cos(2φ)

)

G4 + . . .

]

P (φ)

φ

G = 0.1

G = 1

G = 10

G = Ku F St

φ

2

π



Conclusions

Small     : Gravity reduces clustering because correlations between 
particles and flow structures are weakened.

St

Large     : Gravity may increase clustering significantly due to 
multiplicative amplification.

St

Inertial response to flow fluctuations and the effect of gravity are
not additive.

Gravity introduces an anistropy in the spatial distribution of close-
by particles. Particle separations align with      .±ĝ


