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Overview

Particles in turbulent flow exhibit fractal clustering: the
mass in a ball of size € is: o D
N(e) ~ e

What about shapes? How does the distribution of shapes
of triangles formed by three particles in ball depend upon
its size?

There is a phase transition: below a critical dimension
highly acute triangles become more common.

Shape questions for fractals are a neglected topic. |
believe they will have wide ranging applications.



Ley lines

These are supposed alignments of ancient monuments

and/or geographical features, proposed by Alfred Watkins.
Later it was realised that near alignments are easily seen
In random scatters, e.q.
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a random scatter, from Wikipedia.

D. G. Kendall studied the distribution of tnangle shapes
drawn from a random scatter, and R. Atkinson showed a
set of 'ley lines' based on locations of public telephones.



Kendall's sphere

Describing the shape of a triangle requires two parameters.
D. G. Kendall used a spherical surface: equilaterals at the
poles, co-linear triplets on the equator
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Kendall stated that if three points undergo Brownian
motion on the plane, their triangle-shape point undergoes
Brownian motion on the sphere.
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ThIS gives the shape dlstrlbutlon for trlplets



Triangles in fractals

Most human activity is not randomly scattered. A fractal
distribution is a better model. Perhaps Kendall should
have asked: 'For a fractal distribution of points, how does
the triangle shape distribution depend upon the size of
the ball?'

We considered this question for the distribution of acute
triangles: do these become more common as the ball
shrinks? That is: do ley lines exist in fractals?



A numerical experiment

We used random advection in a compressible flow,
two-dimensional, with short correlation time:
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We evaluated the shape distribution for triplets in a ball.
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R2 — 3 [((>r1)2 + ((’W’g)z + (0r1 — ()'I"Q)z]

We find the shape distribution is indebendent of the ball
size, until the dimension drops below a critical value. Then
we see two power-laws:

Plz)~2z"%, 20 P(z) ~ 27 1> 2> 2(e)



Phase transition of shape distribution
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FIG. 1: Probability density P(z) for various compressibilities 3: A. = 1/¢29 = 0.185... is our estimate of the critical

compressibility, and Dz = 1 when 8 = /5 = 0.447. . .. Straight lines indicate estimates for oy and oz when 3 = 8., Note
that P(z) is normalisable (a; > —1) even at g = 1/4/5, where Dy = 1.



Motion of triangle parameters

Linerarise equation of motion:

i e _ )
or = A(t)or , A;i(t) = i
Or

() = S (w(t). 1)

Represent shape of triplet of points by three parameters:
ory = Riny, 0r9= Ro(ny + opnoy)
Equations of motion:

Fij=mn;-An, Ny -no = Foq(7)




Logarthmic variables

New dynamical variables for triplet of points:

Rq . Ry
Xi=—In—, Xo=—-nop, X3=In ()
§ ) i R
These have very simple equations of motion, for small
acute triangles: X | X7 >0
X = nlt

Their probability density obeys an advection-diffusion
equation:
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Power laws and boundary conditions

Translational invariance implies that advection-diffusion
equation has exponential solutions:

P(X1, X9, X3) = exp(1 X1 + 12X2) P3(X3)
Implying power-laws in original variables:
R'™Y m=2D3  P)~:z*  a=m-—1
Points representing triplets enter and leave domain

representing small, acute triangles. Source density is
X9
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Point-source solution

For a continuous source, integrate propagator over time:

o0 ,
P(X) = K/ dt HTF{,'l{?"E(D)ﬂ_d/Q exp [—S(X, 1)
0

) 1 _
S(X,1) = (X —vt)- D {(X — vt)

Stationary point:

%—?(’X.f“‘) — () X -D'X —t*v.-D v =0
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Large-deviation function is a tilted cone:
P(X) ~ exp |—P(X)]
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Distributed source

Triangles injected at the boundary of the diffusion region,

at rate: I ex(—Xo) Xo < 0
v ) Joexp(—Xg) Xo < (
J(A2) = { 0 Xy >0

Propagator from distributed source:
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Perform integration by seeking a stationary point:
| | O(X71, Xo) = Pp( X1, Xo — X¥) + X7
P(X)=exp|—0(X)] | O
0=1———(X1, Xo— X7™)
0X9

Stationary point obtained from:
X* = X9 —s(8) X,



Origin of the phase transition

Stationary phase point depends upon a slope parameter:

X*=Xo—5(8)X7 (0. }f*)§
(X1, Xo9)

* Negative slope: stationary point exists. Small triangles are
made by compressing nearly co-linear triplets along their
axis.

» Positive slope: no stationary phase point. Small triangles
are made by compressing typical-shape triangles in both
directions.




Calculations for model flow

Drift velocities, diffusion coefficients:
vy = —(1 — 3%)
vg = 2(1 + %)

Dii = (l + %)’2)

Dlg =5 Dgl = (l + ,..-_’J"_)
Doy = 2(1 + /3%)
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Point source exponent:
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Test of prediction
Critical compressibility (zero slope): 3 =1/v/29 = 0.185. ..

Fractal dimension: v 21— )

J. Beec, K. Gawedzki and P. Horvai, P‘.‘.',lr;.;“. Rewv. Leti., 92, 224501, (2004).
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Coherent light scattering

Scattering amplltude
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Conclusion

The result: an unexpected phase transition in the
distribution of triangle shapes: below a critical
dimension, co-linearity is more prevalent as the ball
Size decreases.

The bigger picture: the massive literature on fractals
emphasises mass. This is perhaps the first substantial
result on shape-structure of fractals. There will be
applications to light scattering, network connectivity,
strengths of fractal aggregates...
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