DNS OF TURBULENT CHANNEL FLOWS LADEN WITH FINITE-SIZE PARTICLES AT HIGH VOLUME FRACTIONS

F. Picano, W.-P. Breugem¹ & L. Brandt

Linné FLOW Centre, KTH Mechanics, Stockholm ¹Lab. for Aero and Hydrodynamics, TU-Delft, Delft

Suspensions of solid particles: Applications

- Several processes and applications involve dense suspensions at high flow rates:
 - Waste slurries
 - Pharmaceutics
 - Cement industry
 - Paper making
 - Environmental flows: magma, mud, pyroclastic flows

FLOW

Modeling suspensions

- Different coupling mainly depending on
 - ✓ Volume fraction ϕ
 - ✓ Mass fraction $\psi = \varrho_p / \varrho_f \varphi$
- Different coupling mechanisms:
 - 1-way: particles are transported, but do not influence the flow
 - 2-way: particles influence the flow, but there is no mutual particle interaction
 - 4-way: all phases mutually interact: *dense* cases
- Point-particle approximation *may* apply to 1- and 2way regimes, but not in 4-way...

Fully resolved particle simulations

Morris & Guazzelli 2011 Balachandar & Eaton ARFM 2010

Laminar suspensions of non-Brownian inertia-less spheres

- For athermal inertia-less spheres ($Pe > 10^3, Re < 10^{-3}$), the effective viscosity of the suspension: 10^{4}
 - Depends only on the volume fraction 0

$$\mathbf{0} \qquad \mu_e/\mu_0 = \mu_r(\phi)$$

- Expressions for viscosity:
 - Einstein formula for dilute limit: $\mu_r = 1 + 2.5\phi + O(\phi^2)$
 - Eilers' fitting:

$$\mu_r = \left(1 + \frac{1.25\phi}{1 - \phi/\phi_m}\right)^2$$

STICKEL & POWELL ARFM 2005 MORRIS & GUAZZELLI 2011

Laminar dense suspensions varying the shear rate

Phase-diagram of dense suspension

STICKEL & POWELL ARFM 2005

Different regimes:

- Viscous-dominated: Laminar regime, but influenced by the solid phase.
- *Particle-dominated:* Particle dynamics strongly affects rheological and macroscopic flow features
- **Turbulence-dominated** Turbulence is the leading phenomenon, even if modulated by the particle presence...

MATAS ET AL. PRL 2003 PICANO ET AL PRL 2013 Shao et al. JFM 2012 Yeo & Maxey PF 2013 Kidanemariam et al. NJP 2013

Turbulent channel of particle suspension:REAL conditionsvsDNS conditions

- Pipe diameter: D=0.1-1 m
- Flow Velocity: U₀=1-10 ms⁻¹
- Reynolds number: Re=10⁵-10⁷
- Friction Reynolds n.: $Re_{\tau} = 10^4 10^5$
- Viscous length $\delta_v = D/Re_\tau = 1-100 \ \mu m$
- Particle size d=1-1000 μm
- Particle size/ Viscous length d⁺=1-1000
- Particle size/ Pipe Diameter d/D=10⁻⁶-10⁻²

Matching on the inner scales:

- Particle size/ Viscous length d⁺= 20
- Particle size/ Channel width d/2h= 5 10⁻²
- Channel width : 2h=0.01 m
- Flow Velocity: U₀=0.5 ms⁻¹
- Reynolds number: Re=5600
- Friction Reynolds n.: $Re_{\tau}=180$
- Viscous length $\delta_v = h/Re_{\tau} = 28 \ \mu m$
- Particle size $d=550 \ \mu m$

Turbulent channel flow simulations

- Volume fractions $\varphi = [0, 0.05, 0.1, 0.2]$
- Bulk Reynolds number: $Re_b = U_0 2h/\nu = 5600$
- Friction Reynolds number $Re_{\tau} = 180 \ (\phi = 0)$
- Domain size (x=6h, y=2h, z=3h)
- Up to 10000 finite size particles
- Particle radius a=h/36 ($a^+\approx 10$)
- Mesh (864, 288, 432), 8 points per *a*
- Immersed Boundaries Method

BREUGEM JCP 2012 LAMBERT ET AL JFM 2013 PICANO ET AL PRL 2013

Turbulent channel flow instantaneous snapshots

Mean fluid velocity (rescaled in inner units)

 $U^{+}=U/U_{*}; y^{+}=y/(v/U_{*})$

Φ	0	0.05	0.1	0.2
Re _T	180	195	204	216
1/k	2.5	2.8	3.1	4.5
В	5.5	2.7	0.27	-6.3

Re_T=U_{*}h/v with U_{*}= $(\tau_w/\rho)^{0.5}$ measures the drag: the overall drag increases with ϕ

Mean fluid velocity in $y^+=[50-150]$: U⁺=(1/k) log(y⁺)+B

<u>B decreases, but 1/k increases with ϕ :</u>

Drag reduction at higher Re with wider log layers?

Turbulent fluid velocity fluctuations

The streamwise fluctuation peak strongly decreases with ϕ and move outwards The wall-normal fluctuation peak decreases and moves inwards The spanwise peak moves inwards, increases up to ϕ =0.1 then decreases Close to the wall, all fluctuations increases: *particle layering and wall interaction*

✓ The denser case ϕ =0.2 shows a strong change of turbulence features in the entire channel

Particle concentration and mean velocity

Mean particle and fluid velocity are almost identical since y⁺≈20≈d⁺

Particle wall-layering is present, the first layer moves with an almost constant velocity that decreases with $\boldsymbol{\varphi}$

Particle velocity fluctuations

The particles usually fluctuate less than the fluid in the bulk region, but more in the near wall region.

The particle-wall interaction enhances the particle velocity fluctuations especially in the wall-normal direction

Mean Momentum equation

• Averaging the total momentum equation and considering "phaseensemble average", the momentum equation become

$$\begin{split} &\rho \frac{\partial}{\partial t} \left[(1-\phi)U^f + \phi U^p \right] + \rho \nabla \cdot \left[(1-\phi) < U^f U^f > + \phi < U^p U^p > \right] \\ &= \nabla \cdot \left[-(1-\phi)P^f I + 2(1-\phi)\mu E^f) \right] + \nabla \cdot (\phi < \sigma^p >) - \rho \nabla \cdot \left[(1-\phi) < u^f u^f > + \phi < u^p u^p > \right] \end{split}$$

• Considering the channel flow symmetries, total stress is:

$$\tau(y) = -(1-\phi) < u^{f}v^{f} > -\phi < u^{p}v^{p} > +\nu(1-\phi)\frac{\partial U^{f}}{\partial y} + \frac{\phi}{\rho} < \sigma_{xy}^{p} > = \nu\frac{\partial U^{f}}{\partial y}|_{w}(1-\frac{y}{h})$$
$$\tau(y) = - < u^{t}v^{t} > +\nu(1-\phi)\frac{\partial U^{f}}{\partial y} + \frac{\phi}{\rho} < \sigma_{xy}^{p} > = u_{*}^{2}(1-\frac{y}{h})$$

with
$$< u^t v^t > = (1 - \phi) < u^f v^f > + \phi < u^p v^p >$$

MARCHIORO ET AL. IJMF 1999 Zhang & Prosperetti PF 2011

Momentum balance (normalized by $U_*^2 = \tau_w / \rho$)

• Single phase and $\phi=0.05$

Momentum balance (normalized by $U_*^2 = \tau_w / \rho$)

• Single phase and $\phi=0.1$

Momentum balance (normalized by $U_*^2 = \tau_w / \rho$)

• Single phase and $\phi=0.2$

Total drag increases, but Turbulent Drag reduction at $\phi = 0.2$

$$u_*^2|_{turb} = \frac{d}{dy}(\langle u^t v^t \rangle)|_{y=0}$$

At
$$\phi = 0 \ u_*^2|_{turb} = u_*^2 + O(1/Re_h)$$

The *turbulent* friction Reynolds number:

$$Re_T = u_*|_{turb} h/\nu$$

increases up to $\phi=0.1$, but strongly decreases at to $\phi=0.2$: Reduced turbulence activity at high ϕ

Weaker and wider streaks increasing the volume fraction

 ϕ =0.2--> Formation of super-streaks (twice wider) without wallnormal correlation: Drag reduction??

Final remarks

- DNS of channel flow at high volume fractions $\varphi=0.2$
- Total Drag (Friction Reynolds number) increases with φ
- The turbulence activity measured by Reynolds stress increases up $\varphi=0.1$, but reduces at $\varphi=0.2$
- The attenuated turbulence at φ=0.2 induces a strong reduction of the Von Karman constant k: *Drag reduction at high Reynolds number?*

Effective viscosity, Friction velocity & Reynolds number

Immersed Boundary: a brief description

No direct imposition of boundary conditions, but instead additional force:

$$\rho_f \left(\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{u} \mathbf{u} \right) = -\nabla p_e - \nabla p + \mu_f \nabla^2 \mathbf{u} + \rho_f \mathbf{f}$$

IB force that accounts for presence of solid obstacles (instead of using b.c.'s)

- Pros:
 - simple grids allow use of efficient solvers
 - no regridding needed for moving obstacles
 - "easy" implementation in numerical code
- Cons:
 - imposition of IB forces not straightforward
 - (possible) effects on accuracy, stability, consistency, conservation properties etc of used numerical method

Immersed Boundary Forcing

• Like standard, but with 2nd prediction velocity that includes IB forcing:

$$\underbrace{\left[\underline{u}^{n+1} + \Delta t \cdot \nabla \tilde{p}\right]}_{\underline{u}^{**}} = \underbrace{\underline{u}^{n} + \Delta t \cdot \left(-\nabla p^{n-1/2} + \underline{r}^{n+1/2}\right)}_{\underline{u}^{*}} + \Delta t \cdot \underline{f}^{n+1/2}}$$

$$\nabla^{2} \tilde{p} = \frac{1}{\Delta t} \nabla \cdot \underline{u}^{**}$$
First prediction velocity:
no account of solid obstacles.

$$\underbrace{\underline{u}^{n+1}}_{p^{n+1/2}} = \underbrace{\underline{u}^{**} - \Delta t \cdot \nabla \tilde{p}}_{p^{n-1/2} + \tilde{p}}$$
Correction pressure kept small
by updating pressure =>

$$\underbrace{\underline{u}^{**}}_{\underline{u}^{**}} \approx \underline{u}^{n+1}$$

• Compute IB force from requirement that at solid boundary:

$$\underline{u}^{**} = \underline{u}_d \text{ (} = \text{desired velocity at solid boundary}$$
$$\underline{f}^{n+1/2} \left(\underline{x}_{ijk}\right) = \frac{\underline{u}_d - \underline{u}^*}{\Delta t}$$

