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We consider passive scalar mixing by a prescribed divergence-free velocity vector
field in a periodic box and address the following question: Starting from a given
initial inhomogeneous distribution of passive tracers, and given a certain energy
budget, power budget, or finite palenstrophy budget, what incompressible flow field
best mixes the scalar quantity? We focus on the optimal stirring strategy recently
proposed by Lin et al. [“Optimal stirring strategies for passive scalar mixing,” J.
Fluid Mech. 675, 465 (2011)] that determines the flow field that instantaneously
maximizes the depletion of the H− 1 mix-norm. In this work, we bridge some of the
gap between the best available a priori analysis and simulation results. After recalling
some previous analysis, we present an explicit example demonstrating finite-time
perfect mixing with a finite energy constraint on the stirring flow. On the other hand,
using a recent result by Wirosoetisno et al. [“Long time stability of a classical efficient
scheme for two dimensional Navier-Stokes equations,” SIAM J. Numer. Anal. 50(1),
126–150 (2012)] we establish that the H− 1 mix-norm decays at most exponentially
in time if the two-dimensional incompressible flow is constrained to have constant
palenstrophy. Finite-time perfect mixing is thus ruled out when too much cost is
incurred by small scale structures in the stirring. Direct numerical simulations in two
dimensions suggest the impossibility of finite-time perfect mixing for flows with fixed
power constraint and we conjecture an exponential lower bound on the H− 1 mix-
norm in this case. We also discuss some related problems from other areas of analysis
that are similarly suggestive of an exponential lower bound for the H− 1 mix-norm.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1137/110834901]

Dedicated to Peter Constantin on the occasion of his 60th birthday.

I. INTRODUCTION

The advection of a substance by an incompressible flow is important in many physical settings.
This process often involves complex evolving structures of wide range of space and time scales.
Here, we concentrate on the case of scalar advection where the transported quantity is passive, so
has negligible feedback on the flow. Given a stirring velocity flow field u(x, t) with ∇ · u = 0, we
consider the advection of a passive scalar field ρ(x, t) by a smooth incompressible flow field u(x, t)
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We address the challenge of optimal incompressible stirring to mix an initially
inhomogeneous distribution of passive tracers. As a quantitative measure of mixing
we adopt the H −1 norm of the scalar fluctuation field, equivalent to the (square root
of the) variance of a low-pass filtered image of the tracer concentration field. First
we establish that this is a useful gauge even in the absence of molecular diffusion:
its vanishing as t → ∞ is evidence of the stirring flow’s mixing properties in the sense
of ergodic theory. Then we derive absolute limits on the total amount of mixing,
as a function of time, on a periodic spatial domain with a prescribed instantaneous
stirring energy or stirring power budget. We subsequently determine the flow field
that instantaneously maximizes the decay of this mixing measure – when such a
flow exists. When no such ‘steepest descent’ flow exists (a possible but non-generic
situation), we determine the flow that maximizes the growth rate of the H −1 norm’s
decay rate. This local-in-time optimal stirring strategy is implemented numerically
on a benchmark problem and compared to an optimal control approach using a
restricted set of flows. Some significant challenges for analysis are outlined.

Key words: mathematical foundations, mixing, nonlinear dynamical systems

1. Introduction
The enhancement of mixing by stirring in incompressible flows is an important

phenomenon in a wide variety of applications in sciences and engineering. A natural
question is: how efficient a mixer can an incompressible flow be? This fundamental
question, more precisely posed, is the subject of this paper.

In principle, given an appropriate quantitative measure of mixing along with suitable
constraints on the accessible class of flow fields, the most efficient mixing strategy may
be determined by solving an optimal control problem. In practice this may be difficult,
so it is useful to consider other approaches that might more easily be implemented, at
least theoretically or computationally. Moreover, it is always useful to know absolute
limits on how fast mixing could ever be achieved subject to the relevant constraints.
Such bounds provide a scale upon which particular strategies may be evaluated to
gauge their effectiveness. Here we propose and analyse a theoretical scenario with a

† Email address for correspondence: doering@umich.edu
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Mixing via incompressible fluid flows: 

shearing & straining (stretching & folding) 
but no direct transport, dilution or concentration 



  

€ 

Differential equation :   d
 
X (t)
dt

=
 u (
 
X ,t)

•  X(t) is passive tracer particle position 

Mathematical model 

Given a flow field  u(x, t) with ∇⋅ u = 0,  consider ...  

•   ρ(x,t) is passive scalar concentration 

 

  

€ 

Advection equation :    ∂tρ +
 u ⋅ ∇ρ = 0

  

€ 

From here on  x ∈ [0,L]d  w/periodic boundary conditions.



Primary question we propose to address here: 

  

€ 

Given initial tracer distribution  ρ0(  x ),  
what incompressible flow  u (  x ,t)

is the optimal stirring?

What is optimal?

Secondary questions: 

What constraints on u(x, t)?



Measures of mixing 

Given  ∂tρ +
u ⋅∇ρ = 0 with ρ(x, 0) = ρ0 (x),

Note: 

ρ(⋅, t)− ρ( )
2
= ρ0 − ρ0( )

2

  

€ 

∂tθ +
 u ⋅ ∇θ = 0   with   θ( x ,0) = θ0( x ) = ρ0(  x ) − ρ0

so that

θ(⋅,t)  =  0,   θ(⋅,t)2
 =  θ0

2 ,   ... ,   θ(⋅,t) L∞  =  θ0 L∞

Definition: 

ρ(⋅, t)  ≡  1
Ld

ρ(x, t) dx  
[0,L ]d∫  =  ρ0



Measures of mixing 

u(x, t) is mixing if, for every g(x)∈ L2 ([0,L]d ),

lim
t→∞

g(x) ρ(x, t) dx  
[0,L ]d∫  =  ρ0  g(x) dx

[0,L ]d∫

Definition: 

  

€ 

... that is, if lim
t→∞

g( x ) θ( x ,t) d x  
[0,L ]d∫  =  0

  

€ 



θ(  x ,t) →
t→∞

 0 weakly in L2.



Measures of mixing 

Fact: 

θ (x, t) →
t→∞

 0 weakly in L2



θ (⋅, t)
L2  uniformly bounded & θ (⋅, t)

H −a  →
t→∞

 0

where  θ
H −a ≡

θ̂ k
2

k2 a
k≠0
∑   with a > 0.

∴  H −a  norm can serve a mix-norm.



Measures of mixing 

Fact: 

θ (x, t) →
t→∞

 0 weakly in L2



θ (⋅, t)
L2  uniformly bounded & θ (⋅, t)

H −a  →
t→∞

 0

where  θ
H −a ≡

θ̂ k
2

k2 a
k≠0
∑   with a > 0.

∴  H −a  norm can serve a mix-norm.
↓



  

€ 

…  introduced and used the H−1/ 2 norm as a mix - norm.



FIG. 1. Perfect mixing in finite time t = 2 ·
P1

n=1
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1
2

�n
= 2, with kukL2 constant in time.

TABLE I. The linear decay in time of the mix-norm with a fixed energy flow.

Time t 1 � t
2 Mix-Norm (N)

0 1 N0
1
2

3
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1
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1
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2N0
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1
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3
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1
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16
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1
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Denote by N(t) the mix-norm of the scalar field in Figure 1 as a function of time. Denote
by N0 and N1 the mix-norm of the scalar field at time t = 0 and at time t = 1

2 , respectively.
In Table I we record the mix -norm N for each of the scalar field distribution in Figure 1
and then add a couple more entries to show the trend. Observe that if we sample the norm
at the even (or odd) steps then we have exactly linear in time decay of the mix-norm N . In
particular, we will have exactly,

N(t) = N0

✓
1 � t

tmix

◆
, (11)

with tmix = 2. This shows that the estimate in (9) is sharp.
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⇒  mix-norm = 1
2 θ0 H −1
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⇒  mix-norm = 1
4 θ0 H −1

But H–1 norm in perhaps more “natural” ... 

θ
H −1 θ

L2 = "integral" length scale



Stirring strategies 
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 u (⋅,t) L2

2  =  LdU 2  with constant RMS velocity U

•  … or bounded instantaneous power, for Newtonian 
fluids proportional to the H1 norm of the velocity: 

  

€ 

 
∇ 
 u (⋅,t)

L2

2
 =  Ld

τ 2   with constant RMS rate of strain 1
τ

•  Constraints must be imposed on the available flows in 
order to formulate an optimization problem. 

•  Natural focus is on bounded instantaneous kinetic 
energy proportional to the velocity field’s L2 norm: 



Stirring strategies 

Given either constraint two natural questions are: 

(I)  What flow minimizes the mix-norm evaluated at 
a specified final time tfinal > 0? 

(II)      What flow maximizes the instantaneous decay 
rate of the mixing measure? 

(I)  is an optimal control problem …. 







€ 

Mix− variance =  θ H −1/2

2



Stirring strategies 

Given either constraint two natural questions are: 

(I)  is an optimal control problem….  

(I)  What flow minimizes the mix-norm evaluated at 
a specified final time tfinal > 0? 

(II)      What flow maximizes the instantaneous decay 
rate of the mixing measure? 

(II) is what we address ….  



Stirring strategies 

  

€ 

d
dt

θ(⋅,t) H −1

2  =    2
 
∇ Δ−1θ( ) ⋅

 
∇ 
 u [ ] ⋅
 
∇ Δ−1θ( ) d x ∫

 

=  - 2 Δ−1θ( )  

 
∇ 
 u [ ] :
 
∇ 
 
∇ Δ−1θ( ) d x ∫

=  - 2 θ  
 u ⋅
 
∇ Δ−1θ( ) d x ∫    =  - 2  u ⋅ P θ  

 
∇ Δ−1θ( )[ ] d x ∫

Choose flow, subject to flow constraint, to extremize 

  

€ 

Δ−1θ( )( x ,t) ≡  -
ˆ θ  

k 
(t)

k 2 
k ≠0

∑  ei
 
k ⋅
 
x          P  v [ ] =

 v −
 
∇ Δ−1  ∇ ⋅

 v ( )………………………. 

 
 
 
 
 
 
. 



An analysis aside … 

Estimates on decay of the mix-norm ... for fixed energy: 

≥  -2  U  Ld /2
  θ(⋅, t)

L∞
θ(⋅, t)

H −1

d
dt

θ(⋅, t)
H −1

2  =  -2   
u ⋅ θ  


∇ Δ−1θ( )%

&
'
(  dx∫

… is it really possible to achieve perfect mixing in finite time? 

    ⇒     θ(⋅, t)
H −1  ≥  θ0 H −1  1−   

2πUt
l0

%

&
'

(

)
*    where   l0 = 2π


∇Δ−1θ0

2 1/2

θ0 L∞

∴  d
dt

 θ(⋅, t)
H −1  ≥  - θ0 L∞

 U  Ld /2
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An analysis aside … 

  

€ 

d
dt

θ(⋅,t)
H −1

2  =  - 2 Δ−1θ( )  

 
∇ 
 u [ ] :
 
∇ 
 
∇ Δ−1θ( ) d x ∫

≥  - 2   Δ−1θ(⋅,t)
L∞

Ld / 2

τ
  θ(⋅,t) L2
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palenstrophy optimal mixer

permits finite-time perfect mixing under the fixed-energy constraint is sharp. On the other
hand the exponential analytical lower bound in section IIIA implies that perfect mixing
in finite time is ruled out for the fixed palenstrophy constrained flow field mixer. Direct
numerical simulations supports this result. We conjecture that for the case of finite power
constraint the decay of the H�1 mix-norm is at most exponential in time as evidenced form
the direct numerical simulations. Rigorous analytical estimates are currently unavailable.

IV. RELATED RESULTS FROM OTHER AREAS OF ANALYSIS

In this section we discuss some related problems from other areas of analysis. We then dis-
cuss several analytical questions that would establish the quantitative relationship between
the H�1 mixing measure and these other gauges of well-mixedness.

A. Bressan Conjecture on the Cost of Rearrangement

Previously, Bressan7 conjectured a “cost rearrangement” estimates in terms of the no-
tion of sets (indicator functions) being “"�mixed”. In his set-up, he considered the two-
dimensional torus T2, and considered the set A ⇢ T2 whose measure is half of the total
measure of the system. To recall the more precise definition of "�mixing given in Bressan7

(see also Crippa and De Lellis8 and Bressan14) denote with u : [0, T ] ⇥ T2 7! R2 a time de-
pendent vector field on T2 and we consider any initial point a. The flow of u is the smooth
map

t 7! X(t, a) =:  t(a)
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III. MIXING WITH FIXED PALENSTROPHY CONSTRAINT AND THE
EXPONENTIAL DECAY OF THE H�1 MIX-NORM

The analysis in Lin et al.1 for fixed power constraint also does not rule out finite-time
mixing but their numerical simulations suggest otherwise. Given this numerical evidence,
an exponential bound on the mix-norm for flows with bounded mean square velocity gra-
dient was conjectured. An analytical proof for this conjecture is yet to be available. To
develop some analytical tools, we looked at the case of fixed palenstrophy P := L�2k�uk2L2

constraint. Under this particular setting, we were able to establish analytically the impossi-
bility of finite-time mixing. Our analytical result is consistent with our numerical simulation
results using the optimal stirring strategy in Lin et al.1 implemented with the fixed palen-
strophy constraint. Using similar estimates established in Wirosoetisno6, we present below
that if the flow is constrained to have constant palenstrophy then the H�1 mix-norm decays

at most ⇠ e�
C

2
p
⇡
LP1/2t. That is, finite time perfect mixing is certainly ruled out when too

much cost is incurred by small scale structures in the stirring.

A. The exponential decay of the H�1 mix-norm

Let � = ��1✓ and u = r? = (�@y , @x ). Starting from the advection equation
for the periodic mean-zero scalar field ✓, multiplying by ��, integrating over the spatial
domain, integrating by parts while recalling that u is periodic and divergence free, applying
the following estimate proved in Wirosoetisno6

kJ(f, g)kL2  CkrfkBMOkrgkL2 (12)

for the Jacobian J(f, g) := r?f ·rg, we get the following series of estimates:
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dt
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⇡
krukH1kr�k2L2 ,

(13)

where in the last inequality we have used the embedding of H1 into BMO (a consequence
of Poincaré’s inequality, see Appendix A). Here C is a dimensionless universal constant.
Integrating in time we obtain the exponential in time decay lower bound on the mixing
norm.
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We consider passive scalar mixing by a prescribed divergence-free velocity vector
field in a periodic box and address the following question: Starting from a given
initial inhomogeneous distribution of passive tracers, and given a certain energy
budget, power budget, or finite palenstrophy budget, what incompressible flow field
best mixes the scalar quantity? We focus on the optimal stirring strategy recently
proposed by Lin et al. [“Optimal stirring strategies for passive scalar mixing,” J.
Fluid Mech. 675, 465 (2011)] that determines the flow field that instantaneously
maximizes the depletion of the H− 1 mix-norm. In this work, we bridge some of the
gap between the best available a priori analysis and simulation results. After recalling
some previous analysis, we present an explicit example demonstrating finite-time
perfect mixing with a finite energy constraint on the stirring flow. On the other hand,
using a recent result by Wirosoetisno et al. [“Long time stability of a classical efficient
scheme for two dimensional Navier-Stokes equations,” SIAM J. Numer. Anal. 50(1),
126–150 (2012)] we establish that the H− 1 mix-norm decays at most exponentially
in time if the two-dimensional incompressible flow is constrained to have constant
palenstrophy. Finite-time perfect mixing is thus ruled out when too much cost is
incurred by small scale structures in the stirring. Direct numerical simulations in two
dimensions suggest the impossibility of finite-time perfect mixing for flows with fixed
power constraint and we conjecture an exponential lower bound on the H− 1 mix-
norm in this case. We also discuss some related problems from other areas of analysis
that are similarly suggestive of an exponential lower bound for the H− 1 mix-norm.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1137/110834901]
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I. INTRODUCTION

The advection of a substance by an incompressible flow is important in many physical settings.
This process often involves complex evolving structures of wide range of space and time scales.
Here, we concentrate on the case of scalar advection where the transported quantity is passive, so
has negligible feedback on the flow. Given a stirring velocity flow field u(x, t) with ∇ · u = 0, we
consider the advection of a passive scalar field ρ(x, t) by a smooth incompressible flow field u(x, t)
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FIG. 4. Snapshots of the evolution of the scalar field with ✓0(x) = sinx under the local fixed

palenstrophy optimal mixer

permits finite-time perfect mixing under the fixed-energy constraint is sharp. On the other
hand the exponential analytical lower bound in section IIIA implies that perfect mixing
in finite time is ruled out for the fixed palenstrophy constrained flow field mixer. Direct
numerical simulations supports this result. We conjecture that for the case of finite power
constraint the decay of the H�1 mix-norm is at most exponential in time as evidenced form
the direct numerical simulations. Rigorous analytical estimates are currently unavailable.

IV. RELATED RESULTS FROM OTHER AREAS OF ANALYSIS

In this section we discuss some related problems from other areas of analysis. We then dis-
cuss several analytical questions that would establish the quantitative relationship between
the H�1 mixing measure and these other gauges of well-mixedness.

A. Bressan Conjecture on the Cost of Rearrangement

Previously, Bressan7 conjectured a “cost rearrangement” estimates in terms of the no-
tion of sets (indicator functions) being “"�mixed”. In his set-up, he considered the two-
dimensional torus T2, and considered the set A ⇢ T2 whose measure is half of the total
measure of the system. To recall the more precise definition of "�mixing given in Bressan7

(see also Crippa and De Lellis8 and Bressan14) denote with u : [0, T ] ⇥ T2 7! R2 a time de-
pendent vector field on T2 and we consider any initial point a. The flow of u is the smooth
map

t 7! X(t, a) =:  t(a)

10

2 Z. Lin, K. Bod’ová and C. R. Doering
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constraint reported in Lin et al.1. Figure 4 shows the snapshots of the evolution of the scalar
field with ✓0(x) = sin x under the local fixed palenstrophy optimal mixer. In comparison to
the snapshots reported in Lin et al.1 with the same initial data but under the local fixed
power optimal mixer, the distribution of the scalar field is clearly less mixed at each instant
of time. Simulations were done using pseudo-spectral method under 512 ⇥ 512 resolution.

We summarize our findings in Figure 5. The explicit analytical example presented in
Section II shows that the rigorous analytical lower bound for the H�1 mix-norm, which
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Abstract
We consider a model for mixing binary viscous fluids under an incompressible
flow. We prove the impossibility of perfect mixing in finite time for flows with
finite viscous dissipation. As measures of mixedness we consider a Monge–
Kantorovich–Rubinstein transportation distance and, more classically, the H−1

norm. We derive rigorous a priori lower bounds on these mixing norms which
show that mixing cannot proceed faster than exponentially in time. The rate of
the exponential decay is uniform in the initial data.
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1. Introduction

The present manuscript is concerned with optimal stirring strategies for binary mixtures of
incompressible viscous fluids. More precisely, we study decay rates of certain mixing norms
with respect to a constrained velocity field. We focus on passive scalar mixing, which means
that the feedback of the transported quantity on the flow field is negligible. To model the
binary mixture, we consider an indicator function ρ = ρ(t, x) which takes the values +1 and
−1 only, so that the sets {ρ = 1} and {ρ = −1} represent the regions in which the fluid
consists of component ‘A’ and component ‘B’, respectively. As usual, t and x are the time and
space variable, respectively. The stirring velocity field will be denoted by u = u(t, x), and we
assume this vector field to be smooth. The transport of the passive scalar by the incompressible
flow is then described by the system

∂tρ + u · ∇ρ = 0, (1)

∇ · u = 0, (2)

and we impose the initial condition ρ(0, x) = ρ0(x) ∈ {±1}. For mathematical convenience,
we finally assume that all quantities are periodic in the spatial variables with period cell [0, 1)d .
Observe that the total mass of each species is preserved under the flow. In the case of a critical
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Theorem 1 ( [2]). Let 1 < p ! ∞. There exists a constant c > 0 depending on p and d only
such that for every T > 0

D(ρ(T )) " D(ρ0) exp
(

−c

∫ T

0
‖∇u‖Lp dt

)
.

The statement in theorem 1 shows that the MKR mixing measure cannot decay faster
than exponentially in time, and thus, perfect mixing in finite time is impossible for any given
velocity vector field u for which

∫ T

0
‖∇u‖Lp dt < ∞ for all T > 0.

Remark 1 (Possible generalizations). We remark there is room for several generalizations
of the above result:

1. An analogous bound can be derived in the case where m :=
∫

ρ dx ∈ (−1, 1)\{0}. In this
situation, the definition of D(ρ) has to be modified: ρ± has to be replaced by (ρ − m)±,
where (.)± is defined as in definition 2.

2. As the system (1) and (2) is invariant under the rescaling x = L−1x̂, t = L−1 t̂ , ρ = ρ̂,
and u = û, our results extend to any domain [0, L)d with L > 0. In this case, one has to
understand the involved spatial integrals as spatial averages.

3. The assumption that ρ ∈ {±1} is rather for notational convenience. Qualitatively similar
results are true for any smooth density ρ ∈ R with ‖ρ‖Lp′ ! 1 where 1/p + 1/p′ = 1.

In any of these cases, the constants appearing in the statement of theorem 1 remain generic,
i.e. they depend on d and p only.

Notice that the statement in theorem 1 is closely related to a mixing conjecture of
Bressan [3]. A version of this conjecture has been already established in [5] and our approach
uses techniques developed therein. The connection between Bressan’s conjecture and Ḣ−1

decay rates is discussed in [11, section 4.A].
Although the MKR mixing measure is not known to be equivalent to a (negative) Sobolev

norm, the following estimates, derived in lemmas 1 and 2, indicate that MKR distances yield
indeed reasonable measures of the degree of mixedness:

c

[ρ]BV

! D(ρ) ! ‖ρ‖Ḣ−1 . (3)

Here, c > 0 is a uniform constant that depends only on the space dimension and [ρ]BV is
the BV (semi-)norm of the indicator function ρ. If the boundary of the level sets of ρ are
sufficiently regular, we simply have [ρ]BV = 2Hd−1(∂{ρ = 1}).

As a corollary of theorem 1 and (3), we obtain the following estimate on the decay rate of
the Ḣ−1 norm.

Theorem 2. Let 1 < p ! ∞. There exists constants c, C > 0 depending on p and d only
such that for every T > 0

[ρ0]BV ‖ρ(T , · )‖Ḣ−1 " C exp
(

−c

∫ T

0
‖∇u‖Lp dt

)
.

This second statement excludes the possibility of finite time mixing in terms of the more
classical Ḣ−1 mixing norm. The lower bound is in agreement with the robust numerical
results obtained in [9], where exponential decay rates were observed for the Ḣ−1 mixing norm
when applying optimal stirring strategies. Unfortunately, our approach does not allow for a
measurement of the degree of mixedness of the initial configuration in terms of this Ḣ−1 norm,
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velocity field, and what is the optimal choice of the ‘best mixing’ velocity field (see [24] for a
recent review).

In this paper, our aim is to study how well passive tracers can be mixed under an enstrophy
constraint on the advecting fluid. By passive, we mean that the tracers provide no feedback to
the advecting velocity field. Further, we assume that diffusion of the tracer particles is weak
and can be neglected on the relevant time scales. Mathematically, the density of such tracers
(known as passive scalars) is modelled by the transport equation

∂tθ(x, t) + u · ∇θ = 0, θ(x, 0) = θ0(x). (1.1)

To model stirring, the advecting velocity field u is assumed to be incompressible. For simplicity
we study (1.1) with periodic boundary conditions (with period 1), mean zero initial data, and
assume that all functions in question are smooth.

The first step is to quantify ‘how well’ a passive scalar is mixed in our context. For
diffusive passive scalars, the decay of the variance is a commonly used measure of mixing (see
for instance [9, 13, 21, 23] and references there in). But for diffusion-free scalars the variance
is conserved and does not change with time. Thus, following [17] we quantify mixing using
the H−1-Sobolev norm: the smaller ‖θ‖H−1 , the better mixed is the scalar θ .

The reason for using a negative Sobolev norm in this context has its roots in [13,17,19,21].
The motivation is that if the flow generated by the velocity field is mixing in the ergodic theory
sense, then any advected quantity (in particular θ ) converges to 0 weakly in L2 as t → ∞. This
can be shown to imply that ‖θ(·, t)‖Hs → 0 for all s < 0, and conversely, if ‖θ(·, t)‖Hs → 0
for some s < 0 then θ(x, t) converges weakly to zero. Thus any negative Sobolev norm of
θ can in principle be used to quantify its mixing properties. In two dimensions the choice of
using the H−1 norm in particular was suggested by Lin et al [17] as it scales like the area
dominant unmixed regions; a natural length scale associated with the system. We will work
with the same Sobolev norm in any dimension d; the ratio of H−1 norm to L2 norm has a
dimension of length, and since the L2 norm of θ(x, t) is conserved, the H−1 norm provides a
natural length scale associated with the mixing process.

The questions we study in this paper are motivated by recent work of Lin et al [17]. In [17],
the authors address two questions on the two-dimensional (2D) torus.

• The time decay of ‖θ(t)‖H−1 , given the fixed energy constraint ‖u(t)‖L2 = U .
• The time decay of ‖θ(t)‖H−1 given a fixed enstrophy constraint of the form ‖∇u(t)‖L2 = F .

In the first case the authors prove a lower bound for ‖θ(·, t)‖H−1(T2) that is linear in t ,
with negative slope. This suggests that it may be possible to ‘mix perfectly in finite time’;
namely, choose u in a manner that drives ‖θ(·, t)‖H−1 to zero in finite time. This was followed
by an explicit example in [18] exhibiting finite time perfect mixing, under a finite energy
constraint. This example uses an elegant ‘slice and dice’ construction, which requires the
advecting velocity field to develop finer and finer scales. Thus, while their example maintains
a fixed energy constraint, the enstrophy (‖∇u‖L2 ) explodes. Together with the numerical
analysis in [17, 18] this suggests that finite time perfect mixing by an enstrophy constrained
incompressible flow might be impossible. Our main theorem settles this affirmatively.

Theorem 1.1. Let u be a smooth (time dependent) incompressible periodic vector field on the
d-dimensional torus, and let θ solve (1.1) with periodic boundary conditions and L∞ initial
data θ0. For any p > 1 and λ ∈ (0, 1) there exists a length scale r0 = r0(θ0, λ), an explicit
constant ε0 = ε0(λ, d), and a constant c = c(d, p) such that

‖θ(t)‖H−1 ! ε0r
d/2+1
0 ‖θ0‖L∞ exp

( −c

m(Aλ)1/p

∫ t

0
‖∇u(s)‖Lp ds

)
. (1.2)

Here Aλ is the super-level set {θ0 > λ‖θ0‖L∞}.
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for some explicit constant c2 = c2(d,). Consequently (3.11) reduces to
Z T

0
kru(t)kLp dt >

m(A)
1
p

a

�

�log
� r0
2�

�

�

�,

as desired. ⇤

4. Numerical results

In this section we present numerical results illustrating how the exponential decay
rate varies with the initial data. For numerical purposes we work on the 1-periodic
torus. Given a parameter a, we define the initial data ✓0 = ✓00/k✓00kL2 where

✓00(x, y) =

8

>

>

>

>

<

>

>

>

>

:

sin
�2⇡x

a

�

sin
�2⇡(y + a

8 )

a

�

for 0 < x <
a

2
and

�a

8
< y <

a

2
� a

8

sin
�2⇡x

a

�

sin
�2⇡(y � a

8 )

a

�

for
a

2
< x < a and

a

8
< y <

a

2
+

a

8
0 otherwise.

A figure of this is shown in 1(a).
We do not know which velocity field achieves the lower bound (1.2). However the

steepest descent method introduced in [18] provides us with a reasonable candidate.
Explicitly, their formula gives

(4.1) u =
���1P (✓r�1✓)

kr�1P (✓r�1✓)kL2

,

where P is the Leray-Hodge projection onto divergence free vector fields. This can
be derived by multiplying both sides of (1.1) by ��1✓ and integrating by parts.

Using a pseudo-spectral method1 retaining 768 Fourier modes in each variable we
perform a numerical simulation of (1.1) with the initial data obtained by varying
the parameter a over the set {6/12, 7/12, . . . , 11/12}, and the velocity obtained
dynamically using (4.1). Plots of our solutions at various times (for a = 11/12) are
shown in Figure 1.

Figure 2(a) shows graphs of k✓(t)kH�1 vs t as the parameter a varies over the set
{6/12, . . . , 11/12}. Figure 2(b) shows graphs of lnk✓(t)kH�1 vs t for the same values
of a. Following a short initial “settling down” period, the log plots in Figure 2(b)
are essentially linear indicating a exponential in time decay of k✓0kH�1 .

We fit each of the log plots in Figure 2(b) to a straight line, and plot the negative
reciprocal of the slope vs a in Figure 2(c). Since m(supp(✓0)) = O(a2), Theorem 1.1
predicts this graph to be linear as a function of a. This is in good agreement with
the observed numerics.

5. A Scaling Argument and Universal Decay Rates.

Physical intuition suggests that the exponential decay rate in (1.2) should have
some dependence on the size of support of ✓0. As we discussed in the introduc-
tion, the mixing process can spread around the compactly supported initial data.
Whether this has to happen in the mixing process, and whether this leads to slow-
down in the mixing rate are very interesting open questions. In this section we
show that exponential in time lower bound on the decay of the mix norm with

1The code and more figures can be downloaded from [1].
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Figure 2. The mix norm of the scalar density (Figures (a) & (b)),
and the negative reciprocal of the exponential decay rate vs a as a
varies over {6/12, . . . , 11/12} (Figure (c)).

the rate in the exponential independent of the initial data would have interesting
consequences for mixing in domains with no slip boundaries.

Proposition 5.1. Let I = (0, `)d be a cube in Rd. Suppose that there exist k 2 R,
q 2 [1,1] and c0 > 0 such that

(5.1) k✓(t)kH�1 > B(✓0) exp
⇣�c0
`d/p

Z t

0
krukLp

⌘
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