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Mixing via incompressible fluid flows:

shearing & straining (stretching & folding)
but no direct transport, dilution or concentration



Mathematical model
Given a flow field u(x,r) with V-u =0, consider ...

dx (1) _ i(X 1)

Differential equation :

- X(?) 1s passive tracer particle position

Advection equation: J,p+u-Vp=0

o(x,t) 1s passive scalar concentration

From here on X € [0,L]" w/periodic boundary conditions.



Primary question we propose to address here:

Given initial tracer distribution p,(X),
what incompressible flow u(x,?)

1s the optimal stirring?

Secondary questions:

What 1s optimal’!

What constraints on u(x,7)?



Measures of mixing

Note:

<p(.,t)> = flc[ [O,L]dp(f,t) dx = <,00>

<(P<'»f>-<p>)2>=<(Po -<po>)2>

Definition:

dO+u-VO=0 with 06(x,0)=0,(x)=p,(X)- <p0>
so that

(6¢.1)) =0, (6¢.0°) = (67), ... [|C.1)

) = HHO

LOO



Measures of mixing
Definition:

i(x,t) is mixing if, for every g(x¥) € L’ ([0,L]"),

lim [ &) p(E.0) di = (p,) f[o’”d g(¥) dx

[0,L]

.. that 1s, 1f Iim f

[ —00 OL]

gxX)0(x,t)dx =

I

0(x,t) — 0 weaklyin L’.

[ —>00



Measures of mixing

Fact:

0(x,t) — 0 weakly in L’

)
. uniformly bounded & ||9(',t)||H_a - 0

Where |¢9|| /2' with a > 0.
k =0

. H™® norm can serve a mix-normi.
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... Introduced and used the H~'“ norm as a mix - norm.



But H~! norm in perhaps more “natural” ...

i/

@ = "integral" length scale

6

L2

mix-norm ||00|| o = mix—norm=l||00|| L = mix—norm=l||60|| o
H 2 H 4 H



Stirring strategies

* Constraints must be imposed on the available flows in
order to formulate an optimization problem.

« Natural focus 1s on bounded instantaneous kinetic
energy proportional to the velocity field’s L? norm:

Hﬁ(-,t) iz = L'U” with constant RMS velocity U

* ... or bounded instantaneous power, for Newtonian
fluids proportional to the H! norm of the velocity:

1

2 L , .
.= 3 with constant RMS rate of strain —

H?ﬁ(-,t}
T T




Stirring strategies

Given either constraint two natural questions are:

(I) What flow minimizes the mix-norm evaluated at
a specified final time t;,, > 0?

(I) What flow maximizes the instantaneous decay
rate of the mixing measure?

(I) 1s an optimal control problem ...
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Stirring strategies

Given either constraint two natural questions are:

(I) What flow minimizes the mix-norm evaluated at
a specified final time t;,, > 0?

(I) What flow maximizes the instantaneous decay
rate of the mixing measure?

(I) 1s an optimal control problem...

(II) 1s what we address ...



Stirring strategies

Choose flow, subject to flow constraint, to extremize

2
‘H"l

d
_9.’
dtH (»1)

Il
b

(A-le)(x,z)




An analysis aside ...

Estimates on decay of the mix-norm ... for fixed energy:

| H ! —2f [ ( )] dx

2 UL
. i . ) d/2
- HH(,t)\ L= UL
<‘_> | ‘2 1/2
VA6 >
= HH(.,t)‘H_ = (|6, (1— 2ﬂUt) where [, =2 ‘ :
0 0lfr»

.. 1s 1t really possible to achieve perfect mixing in finite time?
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An analysis aside ...
Bounds on decay of the mix-norm ... for fixed power:
= -2f(a'0)|Vir|:(VVA'0) ax

2
‘H—l

d
— |6,
dt” C.1)

It’s possible to close the differential inequation in d=2 & 3:

N6 . =G0, -|1+]log |6l
g 2 ! 2‘717“8‘H'1

d

I
(\O

1/2
gl

1/2
12

U
I
o8

A6 . < C,|o|

LOO

0




An analysis aside ...

Theorem: for fixed power in d =3,

3/2
4
| pp—
Hl( tmix)

3/2
where ¢ =T X 2 x( % )
3C, \2xaL

o¢.2)

H! = HGO‘

oxa)”

<002>1/2

and /, = 27



An analysis aside ...

Theorem: for fixed power in d=2,

\/1+ log( Ol )
H-!

allowing for total mixing after time

-1/2
U X (—EO) X (1()g!_€0 D
o<<L L L

_G,L

mix = ZnC fi



An analysis aside ...

Note: if the rate of strain’s spatial L* norm has a
uniformly bounded time average,

Lol = 2f (9°0)[va-(va0) ax

allowing for at most exponential decay of the mix-norm.



Stirring strategies

Choose flow, subject to flow constraint, to extremize

Lol = 2f (ve)-[va]: (9576)
= -2 (A7) | Vii]: (VVA6) dx
= -2f0i-V(a'0)di= -2[ii- PlOV(A0)]ax
(A76)(E.0) = - é];{(;) e P[v]=7-VA'(V-7)

lg;tO



Stirring strategies

Then the optimal flow at each instant 1s

P(H %-16)
2>1/2
or

) 1 -A'P(6VAT6)

u,(x,t) = U

t <‘§A-1P(9 VA'0)

2>1/2

... as long as denominators don’t vanish.




Stirring strategies

If/when P(G %-149) = 0, choose i to minimize

oo = 2f|a-Ve(Va'e)-i-a- Vo' (i Vo)) dx

d2

... an eigenvalue problem for the flow field.



Results

Computational tests (fixed power):

t=20 t=0.2
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Computational tests (fixed power):
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FIG. 4. Snapshots of the evolution of the scalar field with 6y(z) = sinz under the local fixed
palenstrophy optimal mixer
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FIG. 3. Decay of the H~! mix-norm for different initial data. See Lin et al.! for detailed description
of the various initial scalar distributions.
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Recommended by B Eckhardt

Abstract

We consider a model for mixing binary viscous fluids under an incompressible
flow. We prove the impossibility of perfect mixing in finite time for flows with
finite viscous dissipation. As measures of mixedness we consider a Monge—
Kantorovich—Rubinstein transportation distance and, more classically, the H -1
norm. We derive rigorous a priori lower bounds on these mixing norms which
show that mixing cannot proceed faster than exponentially in time. The rate of
the exponential decay is uniform in the initial data.
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Theorem 2. Let 1 < p < oo. There exists constants ¢, C > 0 depending on p and d only
such that for every T > 0O

T
Loolsv (T, )|z = Cexp (—C/ IVl Ly df) :
0
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Recommended by L Ryzhik

Abstract

Consider a diffusion-free passive scalar 8 being mixed by an incompressible
flow u on the torus T¢. Our aim is to study how well this scalar can be
mixed under an enstrophy constraint on the advecting velocity field. Our
main result shows that the mix-norm (||6(¢)||g-1) is bounded below by an

exponential function of time. The exponential decay rate we obtain is not
universal and depends on the size of the support of the initial data. We also
perform numerical simulations and confirm that the numerically observed decay
rate scales similarly to the rigorous lower bound, at least for a significant initial
period of time. The main idea behind our proof is to use the recent work of
Crippa and De Lellis (2008 J. Reine Angew. Math. 616 15-46) making progress
towards the resolution of Bressan’s rearrangement cost conjecture.
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Theorem 1.1. Let u be a smooth (time dependent) incompressible periodic vector field on the
d-dimensional torus, and let 0 solve (1.1) with periodic boundary conditions and L initial
data 6y. Forany p > 1 and A € (0, 1) there exists a length scale ro = ry(6y, 1), an explicit
constant &g = &y(A, d), and a constant ¢ = c(d, p) such that

t
d/2+1 —C
10@) | -1 = gory’ ™ |60l L~ exp (W/o IVu(s)|lLr ds). (1.2)

Here A, is the super-level set {6y > \||6p|| 1~}
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)) f0r0<x<gand%a<y<g—g
0/ =
0, 9) = 3 forg<a:<aand%<y<g+g

L0 otherwise.

(a) t=0



10OP Publishing | London Mathematical Society Nonlinearity

Nonlinearity 27 (2014) 973-985 doi:10.1088/0951-7715/27/5/973

Lower bounds on the mix norm of passive
scalars advected by incompressible
enstrophy-constrained flows

(c) t=2.05

) t=5.19
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FIGURE 2. The mix norm of the scalar density (Figures (a) & (b)),

and the negative reciprocal of the exponential decay rate vs a as a
varies over {6/12,...,11/12} (Figure (c)).
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