

Turbulent pair dispersion as a continuous-time random walk

Jérémie Bec

Laboratoire J-L Lagrange Université de Nice-Sophia Antipolis, CNRS Observatoire de la Côte d'Azur, Nice, France

joint work with **Simon Thalabard** and **Giorgio Krstulovic**

bservatoire

arXiv:1405.7315

Fluctuations in turbulent transport

Averaged concentration usually described by eddy diffusivity

Spatial correlations relates to relative motion of tracers

Fluctuations and relative dispersion

- Tracers = characteristics of the advection equation $\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{X}(t) = \boldsymbol{u}(\boldsymbol{X}(t), t) + \sqrt{2\kappa}\,\boldsymbol{\eta}(t) \Rightarrow \theta(\boldsymbol{x}, t) = \langle \theta_0(\boldsymbol{X}(0)) \mid \boldsymbol{X}(t) = \boldsymbol{x} \rangle_{\kappa}$
- Spatial correlations of the concentration $\langle \theta(\boldsymbol{x} + \boldsymbol{r}, t) \, \theta(\boldsymbol{x}, t) \rangle = \iint \langle \theta_0(\boldsymbol{x}_1^0) \, \theta_0(\boldsymbol{x}_2^0) \rangle \, p_2(\boldsymbol{x} + \boldsymbol{r}, \boldsymbol{x}, t \, | \, \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) \, \mathrm{d} \boldsymbol{x}_1^0 \mathrm{d} \boldsymbol{x}_2^0$ $p_2(\boldsymbol{x}_1, \boldsymbol{x}_2, t \, | \, \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) = \text{joint transition probability density}$ of two tracers $\boldsymbol{x}_1(t)$ and $\boldsymbol{x}_2(t)$
- Scalar dissipation anomaly Fronts $\varepsilon_{\theta} = -\kappa \langle (\nabla \theta)^2 \rangle \rightarrow const$ when $\kappa, \nu \rightarrow 0$ with fixed Pr

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \theta(\boldsymbol{x}, t)^2 \rangle = \iint \langle \theta_0(\boldsymbol{x}_1^0) \theta_0(\boldsymbol{x}_2^0) \rangle \times \\ \partial_t p_2(\boldsymbol{x}, \boldsymbol{x}, t | \boldsymbol{x}_1^0, \boldsymbol{x}_2^0, 0) \, \mathrm{d}\boldsymbol{x}_1^0 \mathrm{d}\boldsymbol{x}_2^0$$

Larchevêque & Lesieur, J. Méc. 1981 Nelkin & Kerr, PoF 1981 ; Thomson, JFM 1996

Turbulent dissipative anomaly

Generalized flows and spontaneous stochasticity (Bernard *et al., J. Stat. Phys.* 1998; Eyink, *Physica* D 2008)

$$|\boldsymbol{u}(\boldsymbol{x},t) - \boldsymbol{u}(\boldsymbol{x}',t')| \sim |\boldsymbol{x} - \boldsymbol{x}'|^h$$

 $h < 1 \Rightarrow$ not Lipschitz \Rightarrow non-uniqueness

Onsager's conjecture: h < 1/3 in order to dissipate energy (Duchon & Robert, *Nonlinearity* 2000)

"Local 4/5 law":
$$\varepsilon(\boldsymbol{x},t) = -\frac{3}{4} \lim_{r \to 0} \frac{\langle \delta_r u^{\parallel} | \delta_r \boldsymbol{u} |^2 \rangle_{\text{ang}}}{r}$$

 \Rightarrow close relation between energy dissipation in the limit $Re \rightarrow \infty$ and singular behaviors in particle separation

Recently understood in the case of inviscid Burgers equation (Eyink & Drivas, arXiv 2014; Frishman & Falkovich, arXiv 2014)

Backward-in-time trajectories of entropy solutions are Markovian; velocity is a martingale

 $\boldsymbol{x}_1(t)$

 $\boldsymbol{x}_{2}(t)$

Pair dispersion

Statistics of the two-point motion $\mathbf{R}(t) = \mathbf{x}_1(t) - \mathbf{x}_2(t)$ $\langle \cdot \rangle_{r_0}$ conditioned on a fixed initial distance $|\mathbf{R}(0)| = r_0$

Batchelor's ballistic regime:

 $\langle |\mathbf{R}(t) - \mathbf{R}(0)|^2 \rangle_{r_0} \propto (\varepsilon r_0)^{2/3} t^2$ for $t \ll \tau_{r_0} \sim \varepsilon^{-1/3} r_0^{2/3}$ turnover time Batchelor, Proc. Camb. Phil. Soc. 1952

Richardson–Obukhov explosive law:

$$\left\langle |\mathbf{R}(t)|^2 \right\rangle_{r_0} \sim g \,\varepsilon \, t^3$$
 for $\tau_{r_0} \ll t \ll T_{\mathrm{I}}$

Richardson, Proc. Roy. Soc. Lond. 1926 Obukhov, Izv. Akad. Nauk SSSR 1941 Figure from Scatamacchia et al., *PRL* 2013

Difficult to observe numerically and experimentally because of the large temporal scale separation that is required: $\tau_{\eta} \ll \tau_{r_0} \ll t \ll T_L$ Review by Salazar & Collins Ann. Rev. Fluid Mech. 2009 \Rightarrow sub-leading terms? Mechanisms?

Transition Ballistic/Explosive

Richardson's diffusion

Assumption: velocity difference is **uncorrelated** \Rightarrow separation diffuses Transition probability density $p_2(r, t | r_0, 0)$ $\partial_t p_2 = \nabla \cdot (K(r) \nabla p_2)$ $+ \text{K41}(\text{Obukhov}) \quad K(r) \sim \varepsilon^{1/3} r^{4/3}$ $\Rightarrow p_2(r, t | r_0, 0) \propto \frac{r^2}{t^{9/2}} e^{-C r^{2/3}/(\varepsilon t)} \text{ and } \langle |\mathbf{R}(t)|^2 \rangle_{r_0} \sim g \varepsilon t^3$

Explosive growth: limiting distribution independent of initial separation r_0

Formalized for the Kraichnan model (Gaussian, δ -correlated velocities) see Falkovich, Gawedzki, Vergassola, *Rev. Mod. Phys.* 2001

Physical shortcoming: velocity difference get uncorrelated on times O(t) phenomenology \Rightarrow correlation time $\tau_r \sim r^{2/3}$

$$+r^2 \sim t^3 \Rightarrow \tau_r \sim t$$

Distribution of distances

Markovian approaches

Assumption: acceleration differences are short correlated $\frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} t} = \boldsymbol{A} = \delta \mathrm{D}_t \boldsymbol{u} \quad \longleftarrow \text{ components correlated over a time } \mathrm{O}(\tau_\eta)$

Central-Limit Theorem: $A \stackrel{\text{law}}{\equiv}$

$$oldsymbol{A} \stackrel{ ext{law}}{\equiv} \sqrt{ au_{\eta}} \mathbb{A}(oldsymbol{R},oldsymbol{V}) \circ oldsymbol{\eta}(t)$$
 when $t \gg au_{\eta}$

with $\mathbb{A}^{\mathsf{T}}\mathbb{A} = \langle \delta D_t \boldsymbol{u} \otimes \delta D_t \boldsymbol{u} | \delta \boldsymbol{u} \rangle$ correlations of acceleration differences conditioned on $\delta \boldsymbol{u}$

General form: {

$$\begin{aligned} d\boldsymbol{R} &= \boldsymbol{V} \, \mathrm{d}t \\ \mathrm{d}\boldsymbol{V} &= \boldsymbol{a}(\boldsymbol{R}, \boldsymbol{V}, t) \, \mathrm{d}t + \mathbb{B}(\boldsymbol{R}, \boldsymbol{V}, t) \, \mathrm{d}\boldsymbol{W} \end{aligned}$$

Kurbanmuradov & Sabelfeld (1995); Sawford (2001)

 \Rightarrow Fokker–Planck equation for $p(\mathbf{r}, \mathbf{v}, t | \mathbf{r}_0, \mathbf{v}_0, 0)$

$$\partial_t p + \partial_{r_i} (v_i p) + \partial_{v_i} (a_i p) = \frac{1}{2} \partial_{v_i} \partial_{v_j} [B_{ik} B_{jk} p]$$

Admissibility condition: "well-mixing"

Consistency with Eulerian statistics: $p_E(\mathbf{r}, \mathbf{v})$ is a stationary solution associated to an initial uniform distribution in space (Thomson 1991)

Limits of Markov modeling

- Is acceleration really short-time correlated?
 - ⇒ OK for components but not amplitude (Mordant *et al., PRL* 2004)
 - ⇒ Stretched exponential correlations (non-mixing process)
- Most models lead to an asymptotic diffusion of velocities. Is this the mechanism explaining Richardson's scaling $R \sim t^{3/2}$?
 - ⇒ Is it compatible with the observed intermittent behaviors? e.g. for exit times (Boffetta & Sokolov, PRL 2002)
 - ⇒ Are finite-Re effects solely responsible for lack of scaling? (Scatamacchia et al., PRL 2012)
- Is turbulent relative motion really a Markov process?
 ⇒ Relation to Lévy walks / waiting times approaches (Shlesinger *et al., PRL* 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011)
 - ⇒ Some deviations might be due to memory effects (Ilyin *et al., PRE* 2010; Eyink & Benveniste, *PRE* 2013)

A piecewise-ballistic scenario

Ballistic regime is key in the convergence to the explosive behavior
 Build a simple model that reproduces some essential mechanisms

ls $\ln(|\mathbf{R}(t)|/r_0)$ a **self-averaging quantity**? Law of large numbers? Central-limit theorem? Large deviations?

Are distances a multiplicative process?

The ballistic scenario suggests $\rho = \ln(|\mathbf{R}(t)|/r_0)$ as a relevant quantity Richardson's distribution: $\langle \rho(t) \rangle = (3/2) \ln(t/t_0) + (1/2) \ln g - 0.46$ $\langle [\rho(t) - \langle \rho(t) \rangle]^2 \rangle^{1/2} = 0.748$

Probability distribution of log-distances

Further modeling

Time increment: dissipation time $\Delta t_n = |\delta \vec{u}_n|^2 / \varepsilon$

 $\alpha_n = \delta u_n^{\parallel} / |\delta \vec{u}_n| \quad \text{with statistics} \\ \beta_n = |\delta \vec{u}_n|^3 / (\varepsilon r_n) \quad \begin{array}{l} \text{independent of } r_n \\ (\text{K41}) \end{array}$

$$\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n + \beta_n^2} \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \end{cases}$$

Change of variables: $\gamma_n = \ln(r_n/r_0) - (3/2)\ln(t/t_0)$ $t_0 = \varepsilon^{-1/3} r_0^{2/3}$

This suggests for $\rho = \ln(|\mathbf{R}(t)|/r_0)$ $\langle \rho \rangle \simeq (3/2) \ln(t/t_0) + \langle \gamma \rangle$ $\operatorname{Var}[\rho] \simeq \operatorname{Var}[\gamma] = \operatorname{const}$ $\operatorname{PDF}(\rho) \simeq \Psi(\rho - \langle \rho \rangle)$

Distribution of the log-separation

Scale invariance for the distribution of $\rho = \ln(|\mathbf{R}(t)|/r_0)$

The collapsing distribution can be reproduced by properly choosing the distribution of $\alpha_n = \delta u_n^{\parallel}/|\delta \vec{u}_n|$ and $\beta_n = |\delta \vec{u}_n|^3/(\varepsilon r_n)$

Open questions / Extensions

$$\begin{cases} r_{n+1} = r_n \sqrt{1 + 2\alpha_n \beta_n + \beta_n^2} \\ t_{n+1} = t_n + \varepsilon^{-1/3} \beta_n^{2/3} r_n^{2/3} \end{cases}$$

$$\alpha_n = \delta u_n^{\parallel} / |\delta \vec{u}_n|$$

$$\beta_n = |\delta \vec{u}_n|^3 / (\varepsilon r_n)$$

Effect of the fluid velocity intermittency

How is the scaling behavior affected when K41 is not fulfilled? \Rightarrow Studying extensions of the model assuming multifractal statistics e.g. $\beta_n \propto r_n^{3h_n-1}$ with $p(h_n) \propto r_n^{3-D(h_n)}$ How is scale invariance broken?

Time irreversibility

Relative dispersion is faster backward in time than forward What are the underlying mechanisms? How to quantify? \Rightarrow In the model, the only symmetry-breaking quantity is α_n How is the "Richardson constant" altered when $\alpha_n \mapsto -\alpha_n$?