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Fluctuations in turbulent transport

!

Averaged concentration usually described by eddy diffusivity

Spatial correlations relates to relative motion of tracers
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Fluctuations and relative dispersion

Scalar dissipation anomaly

Spatial correlations of the concentration

= joint transition probability density

Tracers = characteristics of the advection equation
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Larchevêque & Lesieur, J. Méc. 1981 
Nelkin & Kerr, PoF 1981 ; Thomson, JFM 1996
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Onsager’s conjecture:               in order to dissipate energy 
(Duchon & Robert, Nonlinearity 2000)

Turbulent dissipative anomaly

⇒ not Lipschitz ⇒ non-uniqueness

Recently understood in the case of inviscid Burgers equation  
(Eyink & Drivas, arXiv 2014; Frishman & Falkovich, arXiv 2014)

Generalized flows and spontaneous stochasticity 
(Bernard et al., J. Stat. Phys. 1998; Eyink, Physica D 2008)
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“Local 4/5 law”:
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⇒ close relation between energy dissipation in the limit           
and singular behaviors in particle separation

Re ! 1

Backward-in-time trajectories of 
entropy solutions are Markovian; 
velocity is a martingale
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Difficult to observe numerically and experimentally because of the large 
temporal scale separation that is required:
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Pair dispersion
Statistics of the two-point motion

Batchelor’s ballistic regime: 

Richardson–Obukhov explosive law:

conditioned on a fixed initial distance 

for

for

turnover time

⇒ sub-leading terms? Mechanisms?

Figure from 
Scatamacchia et al., 
PRL 2013

Review by Salazar & Collins 
Ann. Rev. Fluid Mech. 2009

Batchelor, Proc. Camb. Phil. Soc. 1952

Richardson, Proc. Roy. Soc. Lond. 1926
Obukhov, Izv. Akad. Nauk SSSR 1941
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Transition Ballistic/Explosive

Explosive regime

Ballistic regime
h|R(t)�R(0)|2ir0 ' S2(r0) t
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DNS: pseudo-spectral + large-scale forcing 
 collocation points

Crossover:

Bitane et al. (PRE 2012)

40963 R� ⇡ 730



Transition probability density

K(r) ⇠ "1/3r4/3

Richardson’s diffusion

+ K41(Obukhov)

⇒

Assumption: velocity difference is uncorrelated ⇒ separation diffuses
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@tp2 = r · (K(r)rp2)

Physical shortcoming: velocity difference get uncorrelated on times

Formalized for the Kraichnan model (Gaussian,    -correlated velocities) 
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phenomenology ⇒ correlation time ⌧r ⇠ r2/3
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Explosive growth: limiting distribution independent of initial separation r0

see Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001
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t = 5t0

 r0 = 2 d

 r0 = 3 d

 r0 = 4 d

 r0 = 6 d

 r0 = 8 d

 r0 = 12 d

 r0 = 16 d

 r0 = 24 d

r0

Distribution of distances
Comparison to Richardson’s distribution

Straight line = 
Richardson’s distribution

broader tails due 
to “trapping” at 

dependence on     
still visible

memory on the initial velocity distribution?

p2(r, t|r0, 0) /
r2

t9/2
e�C r2/3/(" t)

r . r0
Rast & Pinton, PRL 2011
Scatamacchia et al., PRL 2012

Such a 
representation 
emphasizes the 
collapse of the 
core of the 
distribution…



t � ⌧⌘A
law⌘ p

⌧⌘ A(R,V ) � ⌘(t)

ATA = h�Dtu⌦ �Dtu | �ui

dV

dt
= A = �Dtu

Markovian approaches

whenCentral-Limit Theorem:

with

components correlated over a time O(⌧⌘)

Assumption: acceleration differences are short correlated

correlations of acceleration 
differences conditioned on �u

⇒ Fokker–Planck equation for

General form: 
dR = V dt

dV = a(R,V , t)dt+ B(R,V , t) dW

⇢

Consistency with Eulerian statistics:               is a stationary solution 
associated to an initial uniform distribution in space (Thomson 1991)

Kurbanmuradov & 
Sabelfeld (1995); 
Sawford (2001)
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pE(r,v)
Admissibility condition: “well-mixing”



Limits of Markov modeling

Most models lead to an asymptotic diffusion of velocities.         
Is this the mechanism explaining Richardson’s scaling              ? 
⇒ Is it compatible with the observed intermittent behaviors?  
    e.g. for exit times (Boffetta & Sokolov, PRL 2002) 

⇒ Are finite-Re effects solely responsible for lack of scaling? 
    (Scatamacchia et al., PRL 2012)

R ⇠ t3/2

Is turbulent relative motion really a Markov process? 
⇒ Relation to Lévy walks / waiting times approaches  
   (Shlesinger et al., PRL 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011) 

⇒ Some deviations might be due to memory effects  
   (Ilyin et al., PRE 2010; Eyink & Benveniste, PRE 2013)

Is acceleration really short-time correlated? 
⇒ OK for components but not amplitude (Mordant et al., PRL 2004) 

⇒ Stretched exponential correlations (non-mixing process)  
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Figure 2. (Color online) Left: Sketch of a piecewise-ballistic scenario. Right: A typical realiza-
tion of � as a function of the physical logarithmic time ✓, and the corresponding evolution of
⇢ = ln(r/r0) (inset). Here, ↵ is uniform between �1 and 1, and log � is Gaussian with zero mean
and unit variance (Please see the text for the definitions).

inputs are the statistics of

↵k =
�u

k
k

|�uk|
and �k =

|�uk|3

2 " |rk|
. (3.2)

The variables ↵k 2 [�1, 1] should have an asymmetric distribution in order to reproduce
the skewness of longitudinal velocity di↵erences in turbulence. The variables �k account
for the fluctuations in the rate of energy transfer and, under K41 assumptions, should be
independent of the rk’s. The time lapses between two consecutive turning points may be
thought of as correlation times: It is then natural to prescribe that both ↵k and �k be
independently distributed. We later refer to the distributions of the noises ↵k and �k as
↵ and � — without a subscript — and denote with h·i the average over their realizations.

Under these assumptions the dynamics of the distance rk = |rk| reduces to

rk+1 = rk

�
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2
k

�1/2
and tk+1 = tk + (2 ")�1/3 (�k rk)2/3

. (3.3)

Note that this process is not purely multiplicative. As discussed in the previous section,
if the time increments ⌧k = tk+1 � tk were constant, then the distributions of the log-
arithms of the distance at a given observation time would evolve towards a Gaussian
distribution given by the Central Limit Theorem. This is however not the case here, as
the time associated to a given pair of tracers is itself a random variable, which is neither
additive nor multiplicative. In the present paper, we do not need to prescribe further the
distributions of ↵ and �. The only constraint concerns the quantity hln

�
1 + 2↵� + �

2
�
i.

It is required to be positive in order to ensure that the times tk go to infinity as the
number of turning points diverges. This prevents the sequence tk from converging and
the two tracers from touching each other in a finite time.

3.2. Statistics of the separations from the piecewise ballistic perspective

We shall not here attempt to work out in full mathematical details the statistics of the
separations which the model predicts. Rather, we focus on a general and qualitative
description of those, based on simple physical arguments.

3.2.1. Self-Similarity

The piecewise-ballistic scenario as modeled by the system (3.3) yields a whole family
of self-similar distributions for the separations. To understand the origin of this self-

the       ’s are independent from each other

A piecewise-ballistic scenario
Ballistic regime is key in the convergence to the explosive behavior
Build a simple model that reproduces some essential mechanisms
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Continuous-time random walk

non-Markovian w.r.t. to the continuous time
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Is                    a self-averaging quantity?  
     Law of large numbers? Central-limit theorem? Large deviations?

ln(|R(t)|/r0)



The ballistic scenario suggests                            as a relevant quantity

Are distances a multiplicative process?
⇢ = ln(|R(t)|/r0)
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Richardson’s distribution: h⇢(t)i = (3/2) ln(t/t0) + (1/2) ln g � 0.46

h[⇢(t)� h⇢(t)i]2i1/2 = 0.748



Probability distribution of log-distances
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Distribution of the log-separation
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Figure 3. (Color online) Probability density function of the logarithm of the inter-particle dis-

tance ⇢ = ln(r(t)/r0) for various r0 and, in each case, at time t ⇡ 9 ⌧r0 with ⌧r0 = "�1/3r2/30 . The
dashed line is Richardson’s distribution. The black solid line is the steady distribution obtained
numerically from the ballistic model for ln� ⇠ N (0, 1) and p(↵) = (5/6) ((↵+ 1)/2)�1/3.

the fixed time t ⇡ 9 ⌧r0 . With such a choice, the distribution of the logarithmic distances
seems to converge towards a single distribution, regardless of r0. The collapse of the full

distribution makes the explosive nature of pair separation explicit. It is also once again
clear that the limiting distribution is not Richardson’s (dashed line). Note that a casual
choice for the statistics of ↵ and � makes the piecewise ballistic steady distribution (solid
line) fit the data better. The model predicts a sharp cuto↵ at large values. However, the
current statistical accuracy does not enable us to discriminate between such a behaviour
and the double exponential obtained in the framework of eddy-di↵usivity approaches.

To conclude, let us stress again that the piecewise-ballistic phenomenology provides a
new and intuitive way of thinking about the problem of pair dispersion and reproduces
some salient statistical features of tracer separation. While it might also be used to
investigate possible e↵ects of the fluid flow intermittency, we limited here our study
to the K41 framework. The proposed toy model displays a number of general trends
that include (i) the explosive nature of the statistics, or in other words the property
that the steady distributions do not depend on the initial separation; (ii) their self-
similarity, which makes the statistics of the logarithm of the separation collapse towards
a single distribution; (iii) the presence of a right-end cuto↵ in the associated probability
density; (iv) the growth of the average of the logarithmic separation as three halves of
the logarithmic time, compatible with the t

3 law, resulting from the multiplicative nature
of the separation process.
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⇢ = ln(|R(t)|/r0)Scale invariance for the distribution of

Richardson

The collapsing distribution can be reproduced by properly choosing the 
distribution of                           and  ↵n = �uk
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Open questions / Extensions

Time irreversibility 
Relative dispersion is faster backward in time than forward 
What are the underlying mechanisms? How to quantify? 
⇒ In the model, the only symmetry-breaking quantity is      

Effect of the fluid velocity intermittency 
How is the scaling behavior affected when K41 is not fulfilled? 
⇒ Studying extensions of the model assuming multifractal statistics     
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How is the “Richardson constant” altered when                 ?↵n 7! �↵n

How is scale invariance broken?


