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Fluctuations in turbulent transport

> Averaged concentration usually described by eddy diffusivity

.

> Spatial correlations relates to relative motion of tracers



Fluctuations and relative dispersion

> Tracers = characteristics of the advection equation
d

X (8) =u(X(t),t) + V2en(t) = O(z,t) = (6(X(0) | X(t) = =),

> Spatial correlations of the concentration
O(x +7r,t)0(x,t)) // (0o (x) Op(x9)) po(x + 7, x, t |2V, 29, 0) de)dx)

pa(x1, 2, t| 2], x5,0) = joint transition probability density
of two tracers €1 (t)and T2 (%)

> Scalar dissipation anomaly

gg = —k((VO)?) = const
when k,v — 0 with fixed Pr
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Owpa(x, x, t|x), x5, 0) dx)dx)

Fronts

Larchevéque & Lesieur, /. Méc. 1981
Nelkin & Kerr, PoF 1981 ; Thomson, /FM 1996



Turbulent dissipative anomaly

> Generalized flows and spontaneous stochasticity 1 ()
(Bernard et al., J. Stat. Phys. 1998; Eyink, Physica D 2008)

u(z,t) —u(@', )] ~ |z —a'|"

h <1 = not Lipschitz = non-uniqueness

> Onsager’s conjecture: h < 1/3 in order to dissipate energy
(Duchon & Robert, Nonlinearity 2000)
3 (6rull|5,1]?) ang

“Local 4/5 law”: e(x,t) = —- lim
r—0 T

= close relation between energy dissipation in the limit Re — oo
and singular behaviors in particle separation

» Recently understood in the case of inviscid Burgers equation
(Eyink & Drivas, arXiv 2014; Frishman & Falkovich, arXiv 2014)

A

t Backward-in-time trajectories of
entropy solutions are Markovian;
velocity is a martingale
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Pair dispersion
> Statistics of the two-point motion R(t) = x1(t) — x2(t)
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( - ), conditioned on a fixed initial distance |R(
> Batchelor’s ballistic regime:
(1R - ROP),, o (70

for t < 7y ~ 5_1/3r§/3 turnover time

Batchelor, Proc. Camb. Phil. Soc. 1952

2 Richardson-Obukhov explosive law:
(IR@)F), ~get® for 7, <t < Ty,

| Figure from
Richardson, Proc. Roy. Soc. Lond. 1926 Scatamacchia et al.,
Obukhov, Izv. Akad. Nauk SSSR 1941 PRL 2013

Difficult to observe numerically and experimentally because of the large
temporal scale separation that is required: 7, < 7, K t < 17,

f\iﬁ',e,veve5’.&?3}3@;&?335”; = sub-leading terms? Mechanisms?



Transition Ballistic/Explosive
Bitane et al. (PRE 2012)

DNS: pseudo-spectral + large-scale forcing
40967 collocation points Ry ~ 730
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Richardson’s diffusion

Assumption° velocity difference is uncorrelated = separation diffuses

VZ/ Transition probability density pa(7,t|70,0)
Otp2 = V - (K(r)Vp2)

+ K41(Obukhov) K (r) ~ gl/3p4/3

7“2

= pa(r,tro,0) & —=e 7 /ED and (|R(#)[?)

1072 ~g5t3

To

Explosive growth: limiting distribution independent of initial separation r

Formalized for the Kraichnan model (Gaussian, d-correlated velocities)
see Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001

Physical shortcoming: velocity difference get uncorrelated on times O(¢)

. 2/3
phenomenology = correlation time 7 ~ 1 /

+ri~ P = T~



Distribution of distances
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Markovian approaches

Assumption: acceleration differences are short correlated
dV
dt

= A = dDyu —— components correlated over a time O(7,)

law

Central-Limit Theorem: A = /7, A(R,V)on(t) when t> 7,

with ATA = (6D,u ® 6D,u | du) correlations of acceleration
differences conditioned on du

dR=V dt Kurbanmuradov &

General form: {
Sawford (2001)

= Fokker—Planck equation for p(r,v,t|rg,vo,0)
1
Otp + O, (Vi p) + Oy, (ai p) = 5% Ov; | Bir. Bji )

Admissibility condition: “well-mixing”
Consistency with Eulerian statistics: pe(r,v) is a stationary solution
associated to an initial uniform distribution in space (Thomson 1991)



Limits of Markov modeling

> Is acceleration really short-time correlated?

= OK for components but not amplitude (Mordant et al., PRL 2004)
= Stretched exponential correlations (non-mixing process)

Most models lead to an asymptotic diffusion of velocities.
Is this the mechanism explaining Richardson’s scaling R ~ t3/22

= Is it compatible with the observed intermittent behaviors?
e.g. for exit times (Boffetta & Sokolov, PRL 2002)

= Are finite-Re effects solely responsible for lack of scaling?
(Scatamacchia et al., PRL 2012)

s turbulent relative motion really a Markov process?

= Relation to Lévy walks / waiting times approaches
(Shlesinger et al., PRL 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011)

= Some deviations might be due to memory effects
(lyin et al., PRE 2010; Eyink & Benveniste, PRE 2013)



A piecewise-ballistic scenario

> Ballistic regime is key in the convergence to the explosive behavior
7 Build a simple model that reproduces some essential mechanisms

Vi 2 Continuous-time random walk
Sy, g Tn = Tnt1 = Tn + Atndiy,
5@#%/ tn > tngt =ty + Aty
TOM\\ 2 Fai1 {5un and At,, depend on 7,
AN the du,’s are independent from each other

non-Markovian w.r.t. to the continuous time

\ - 1/3
fommenmnenns - v time K41 version: {&L” (e7n)

Aty ~ 1y /0uy ~ 5_1/37“3/3

tO tl t2 tn tn+1

Tot1 = Tn + Xprn = In(r,/ro) Zln (14 Xg) x

ln(t/t0>

DO | Qo

} :>1n(rt/r0):
tn+12tn+an721/3 =27 ZZY 7“72,/3o<e3
k

2 Is In(|R(t)|/ro) a self-averaging quantity?
Law of large numbers? Central-limit theorem? Large deviations?



Are distances a multiplicative process?

> The ballistic scenario suggests p = In(|R(¢)|/r¢) as a relevant quantity
Richardson’s distribution: (p(¢)) = (3/2) In(¢/to) + (1/2)Ing — 0.46
([o(t) = (p(t)]*)'/? = 0.748




Probability distribution of log-distances
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Further modeling

Time increment: dissipation time At,, = |§d,|*/e

o, = oull /16, yvi(gh stat(ijstici(s . <(7“n+1 = rn\/1+ 20008 + 32

s |3 independent o _

Bn —_ ‘5U,n’ /(5Tn) (K41I)3 " \t’nj—l—l — t’n, + € 1/35721/3T?L/3

Change of variables: v, = In(ry/ro) — (3/2)In(t/te)  to = 1/3r5/
0 ' Bou'ndedl
o\ 1/3
B -V B T
=
The v, ’s are becoming ~1or
Statlonary 1D random walk
Iwith positive drift
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This suggests for p = In(|R(t)|/ro)
(p) = (3/2)In(t/to) + (v)  Var[p] ~ Var[y] = const PDF (p) =~ ¥(p — (p))



Distribution of the log-separation

Scale invariance for the distribution of p = In(|R(t)|/70)
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The collapsing distribution can be reproduced by properly choosing the
distribution of a,, = dul /|6@,| and B,
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Open questions / Extensions

T'n+1 = Tn \/1 + 2an6n + 67%, Uy — 5u7|L,/‘5ﬁn‘
tni1 =ty +e 1/352/302/3 Bn = [0in]’/(e77)

> Effect of the fluid velocity intermittency
How is the scaling behavior affected when K41 is not fulfilled?
= Studying extensions of the model assuming multifractal statistics
e.g. B, oc rihn=t with p(h,) o rf’b_D(h”)

How is scale invariance broken?

> Time irreversibility
Relative dispersion is faster backward in time than forward
What are the underlying mechanisms? How to quantify?
= In the model, the only symmetry-breaking quantity is o,
How is the “Richardson constant” altered when «,, — —a,?



