How large particles filter the motions of ambient turbulence

NORDITA Conference on Dynamics of Particles in Flows, Stockholm, June 11, 2014.

Evan A.Variano

University of California, Berkeley

Civil & Environmental Engineering

MargaretColin R.GabrielleL. ByronMeyerBellani

(not pictured) Laura J. Mazzaro and Yiheng Tao

Cal

Motivation

Floc (including sediment aggregates) Aquatic organisms with weak swimming

 $1 \lesssim \mbox{ Aspect ratio } \lesssim 10$

Near neutral buoyancy

Can have scales within inertial subrange

Q: Statistics of particle rotation?

Particle Fabrication

 $1 \lesssim \text{aspect ratio} \lesssim 10$ Near neutral buoyancy Can have scales within inertial subrange

Particle Fabrication

Cal

Cal

 $\underline{U}_{m} - \underline{U}_{n} = \underline{\Omega} \times (\underline{X}_{m} - \underline{X}_{n})$

Analysis: Particle Rotation

3 measured vectors within a particle give:
4 measurements of Ω_x
1 measurement of Ω_y
1 measurement of Ω_z validation

[Bellani et al, JFM 2012]

[Bellani and Variano, Exp. Fluids 2014]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Inspired by active grid wind tunnels [Makita 1991, Mydlarski & Warhaft 1996]

Axial velocity variance Lateral velocity variance

Cal

 $\begin{aligned} R_{\lambda} &= 270 \\ L &= 72 \text{ mm} \\ \eta &= 0.4 \text{ mm} \\ \epsilon &= 4.6 \text{ cm}^2/\text{s}^3 \end{aligned} \qquad \begin{array}{l} \lambda &= 12 \text{ mm} \\ w_{\text{rms}} &= 2 \text{ cm/s} \end{aligned}$

[Bellani and Variano, Exp. Fluids 2014] ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT

Neutrally buoyant large spheroids

Cal

- Vorticity rms matches that predicted by filtered turbulent field (≈1 s⁻¹)
- Vorticity autocovariance timescale matches that predicted by filtered turbulent field (≈0.5 s)
- Weak shape dependence for quantities measured in the lab frame (and also weak size dependence)

Neutrally buoyant large cylinders

Neutrally Buoyant Cylinders

Aspect Ratio	0.5	1	2	4
Minimum length	3 mm	4.8 mm	7.5 mm	6 mm
maximum length	12 mm	9.5 mm	7.5 mm	12 mm
Equivalent sphere diameter (d _e)	8.6 mm	8.6 mm	8.6 mm	8.6 mm
Kolmogorov scale	0.4 mm	0.4 mm	0.4 mm	0.4 mm
Integral scale	72 mm	72 mm	72 mm	72 mm

Neutrally Buoyant Cylinders

All cylinders have the *same* angular velocity, within measurement error.

Neutrally Buoyant Cylinders

All cylinders have the same angular velocity, within measurement error.

 $\Omega_{\rm x} \equiv \Omega_{\rm v} \equiv \Omega_{\rm z}$

Buoyant (inertial) large spheroids

Buoyant Spheroids

Gravity breaks symmetry and introduces shape-dependence

Buoyant Spheroids

	Spheres [95% CI], n=65	Ellipsoids [95% Cl], n=59	
Var(Ω _x) [sec ⁻²]	0.21 [0.14, 0.29]	0.74 [0.40, 1.34]	
Var(Ω _y) [sec ⁻²]	0.28 [0.16, 0.42]	1.20 [0.56, 2.03]	
Var(Ω _z) [sec ⁻²]	0.06 [0.04, 0.10]	0.45 [0.26, 0.66]	

Unpublished data, please do not distribute TORY FOR FLUID MOTION IN THE ENVIRONMENT

Buoyant (inertial) large cylinders

Buoyant Cylinders

Buoyancy increases angular velocity, especially for aspherical particles

Hypothesis/conjecture

Angular velocity for buoyant elongated particles in turbulence $\mathcal{L}=?$

Angular velocity for neutrally buoyant elongated particles in turbulence

+

Angular velocity for buoyant elongated particles in quiescent flow [Example]

Buoyant (inertial) large spheroids

Fluid vs. Particle Velocity (Spheres) 0.06 Y-velocity 0 Unpublished data, **Best-Fit Line** please do not distribute 0.04 95% CI 1:1 Particle Velocity [m/s] X-velocity 0.02 Z-velocity -0.02 ο -0.04 -0.06 -0.04 -0.02 0.02 0.04 0.06 0 Fluid Velocity [m/s]

Fluid vs. Particle Velocity (Spheres)

Unpublished data, please do not distribute	Spheres	Ellipsoids
Settling Slip Velocity	-0.027 ± 0.002 ms ⁻¹	-0.028 ± 0.001 ms ⁻¹
Quiescent Settling Rate Modified Clift-Gauvin approximation [<i>Loth 2008</i>]	-0.069 ms ⁻¹	-0.070 ms ⁻¹
Stokes # (St), Settling # (Sv)	{7.2, 3.5}	{9, 3.5}

Strong evidence of altered settling; systematic study with cylinders underway

Conclusions

Neutrally buoyant large particles have very weak shape dependence for angular velocity in the lab frame.

Buoyancy causes additional angular velocity which is shape-dependent in the lab frame and also anisotropic in the lab frame.

Large particles show altered settling ("loitering")

 $\underline{U}_{m} - \underline{U}_{n} = \underline{\Omega} \times (\underline{X}_{m} - \underline{X}_{n})$

