Exact Regularized Point Particle method for particle laden flows in the two-way coupling regime

P. Gualtieri¹,

in collaboration with

F. Picano², G. Sardina^{2,3}, F. Battista¹, & C.M. Casciola¹

 ¹Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza
 ²Linné Flow Center, KTH Mechanics, Sweden.
 ³UKE - Università Kore di ENNA Facoltà di Ingegneria, Italy.

> Dynamics of Particles in Flows Fundamentals and Applications Stockholm

Fluid-particles interaction

- (1) one-way coupling
- (1) + (2) two-way coupling
- (1) + (2) + (3) + (4) four-way coupling
- beyond the one-way coupling · · · · ·

 \Rightarrow turbulence modulation in the *two-way coupling regime*

 \Rightarrow develope innovative momentum coupling methods

Particle In Cell approach (PIC) [Crowe et al. J. Fluid Eng. (1977)]

- Eulerian description (fluid) & Lagrangian tracking (particles) [e.g. Eaton Int. J. Mult. Flow] $\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \pi + \nu \nabla^2 \mathbf{u} - \frac{1}{\rho_f} \sum_p \mathbf{D}_p(\mathbf{t}) \delta \left[\mathbf{x} - \mathbf{x}_p(\mathbf{t}) \right]$
- The *back-reaction* **F** is singular: average on the cell ΔV_{cell}

• The mass load $\Phi = M_p/M_f$ controlls the momentum

PIC: numerical issues

The tails of the spectra hardly decay when $N_p/N_c \ll 1$

- fine grids require a large number of particles
- grid dependent forcing
- limitations on the mass load

0

P.G., F. Picano, G. Sardina, C.M. Casciola, JFM 715 (2013)

PIC: numerical issues

The tails of the spectra hardly decay when $N_p/N_c \ll 1$

- fine grids require a large number of particles
- grid dependent forcing
- limitations on the mass load

P.G., F. Picano, G. Sardina, C.M. Casciola, JFM 715 (2013)

Exact Regularized Point Particle (ERPP) method

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} \\ \mathbf{u}|_{\partial \Omega_p} = \mathbf{v}_p; \quad \mathbf{u}|_{\partial \Omega} = \mathbf{u}_{wall} \\ \mathbf{u}(\mathbf{x}, t_n) = \mathbf{u}_0(\mathbf{x}) \end{cases}$$

Decompose the (incompressible) fluid velocity \mathbf{u} in a background flow \mathbf{w} and a perturbation \mathbf{v} , namely $\mathbf{u} = \mathbf{w} + \mathbf{v}$

$$\begin{cases} \frac{\partial \mathbf{w}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \pi + \nu \nabla^2 \mathbf{w} \\ \mathbf{w}|_{\partial \Omega} = \mathbf{u}_{wall} - \mathbf{v}|_{\partial \Omega} \\ \mathbf{w}(\mathbf{x}, t_n) = \mathbf{u}_0(\mathbf{x}) \end{cases} \begin{cases} \frac{\partial \mathbf{v}}{\partial t} = -\nabla \tilde{p} + \nu \nabla^2 \mathbf{v} \\ \mathbf{v}|_{\partial \Omega_p} = \mathbf{v}_p - \mathbf{w}|_{\partial \Omega_p} \\ \mathbf{v}(\mathbf{x}, t_n) = 0 \end{cases}$$

Perturbation v described in terms of unsteady Stokes equations P.G., F. Picano, G. Sardina, C.M. Casciola, submitted to JFM, http://arxiv.org/abs/1405.6969 *Exact solution* of the unsteady Stokes problem

$$v_i(\mathbf{x},t) = \int_0^t d\tau \int_{\partial\Omega} t_j(\boldsymbol{\xi},\tau) G_{ij}(\mathbf{x},\boldsymbol{\xi},t,\tau) - v_j(\boldsymbol{\xi},\tau) \mathcal{T}_{ijk}(\mathbf{x},\boldsymbol{\xi},t,\tau) n_k(\boldsymbol{\xi}) \, dS$$

 G_{ij} the unsteady Stokeslet; \mathcal{T}_{ijk} the associated stress tensor

For *small particles* the *far field* disturbance is estimated in terms of multipole expansion [Kim & Karilla, Microfluidics, (2000)]

$$v_i(\mathbf{x},t) \simeq -\int_0^t D_j(\tau) G_{ij}(\mathbf{x},\mathbf{x}_p,t,\tau) d\tau$$

with $\mathbf{D}(\tau)$ hyrodynamic force, i.e. the Stokes Drag (· · · or more [Maxey & Riley, (1983); Gatignol (1983)])

ERPP: vorticity

Eulerian far field disturbance $\mathbf{v}(\mathbf{x}, t)$ described by the unsteady singularly forced Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} - \nu \nabla^2 \mathbf{v} + \nabla \tilde{p} = -\frac{\mathbf{D}(t)}{\rho_f} \delta \left[\mathbf{x} - \mathbf{x}_p(t) \right]$$

How to regularize the solution of the disturbance field?

Physics of the coupling

The vorticity, once generated along the particle trajectory, is diffused by viscosity and then injected into the Eulerian grid

vorticity generated – by the particle –

ERPP: vorticity diffusion

Why vorticity? \Rightarrow Diffusion equation

$$\partial_t \boldsymbol{\zeta} - \nu \nabla^2 \boldsymbol{\zeta} = \frac{\mathbf{D}(t)}{\rho_f} \times \nabla \delta \left[\mathbf{x} - \mathbf{x}_p(t) \right]$$

Fundamental solution

$$\partial_t g - \nu \nabla^2 g = \delta \left(\mathbf{x} - \mathbf{x}_p \right) \delta(t - \tau)$$
$$g(\mathbf{x}, \mathbf{x}_p, t, \tau) = \frac{1}{\left(2\pi\sigma^2\right)^{3/2}} \exp\left(\frac{-\|\mathbf{x} - \mathbf{x}_p\|^2}{2\sigma^2}\right), \quad \sigma(t - \tau) = \sqrt{2\nu(t - \tau)}$$

For $t > \tau$ the solution is both

$$-$$
 regular, e.g. $g \in C^{\infty}$

- *local*, i.e decays more than exponentially

• *Analytical solution* expressed as a convolution with the fundamental solution of the diffusion equation

$$\boldsymbol{\zeta}(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^t \mathbf{D}(\tau) \times \nabla g \left[\mathbf{x} - \mathbf{x}_p(\tau), t - \tau \right] d\tau$$

- For $\tau \simeq t$, $g(\mathbf{x}, \mathbf{x}_p, t, \tau)$ tends to behave as badly as the Dirac delta function \Rightarrow split $\boldsymbol{\zeta} = \boldsymbol{\zeta}_{Regular} + \boldsymbol{\zeta}_{Singular}$
- The regularization procedure adopts a temporal cut-off ϵ_R

$$\boldsymbol{\zeta}_{R}(\mathbf{x},t) = \frac{1}{\rho_{f}} \int_{0}^{t-\epsilon_{R}} \mathbf{D}(\tau) \times \nabla g \left[\mathbf{x} - \mathbf{x}_{p}(\tau), t-\tau\right] d\tau$$

⇒ Regularized field ζ_R everywhere smooth and characterized by the smallest spatial scale $\sigma_R = \sqrt{2\nu\epsilon_R}$

ERPP: a cartoon

 \Rightarrow Vorticity at scales smaller that σ_R is not neglected but injected at later times

ERPP: a cartoon

 \Rightarrow Vorticity at scales smaller that σ_R is not neglected but injected at later times

ERPP: coupling with the carrier phase

• The regular component of the vorticity field $\boldsymbol{\zeta}_R$ satisfy

$$\frac{\partial \boldsymbol{\zeta}_R}{\partial t} - \nu \nabla^2 \boldsymbol{\zeta}_R = \frac{1}{\rho_f} \nabla \times \mathbf{D}(t - \epsilon_R) g \left[\mathbf{x} - \mathbf{x}_p(t - \epsilon_R), \epsilon_R \right]$$

• The regular (perturbation) velocity field \mathbf{v}_R follows as

$$\frac{\partial \mathbf{v}_R}{\partial t} - \nu \nabla^2 \mathbf{v}_R = -\frac{1}{\rho_f} \mathbf{D}(t - \epsilon_R) g \left[\mathbf{x} - \mathbf{x}_p(t - \epsilon_R), \epsilon_R \right]$$

• The fluid velocity $\mathbf{u} = \mathbf{w} + \mathbf{v}_R$ is then given by

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} - \sum_{p=1}^{N_p} \frac{\mathbf{D}_p(t-\epsilon_R)}{\rho_f} g\left[\mathbf{x} - \mathbf{x}_p(t-\epsilon_R), \epsilon_R\right]$$

- Remarks
 - simply add an extra term in any N-S solver
 - the function g is *local* in space \Rightarrow *computational efficiency*

Particles Dynamics & Hydrodynamic force

• Diluted small particles

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p; \quad m_p \frac{d\mathbf{v}_p}{dt} = \mathbf{D}_p(t) + (m_p - m_f) \mathbf{g}$$

• Hydrodynamic force

[Maxey & Riley, PoF (1983); Gatignol, J. Mec. Theor. et appl. (1983)]

$$\begin{aligned} \mathbf{D}_{p}(t) &= 6\pi\mu a_{p}\left[\tilde{\mathbf{u}}(\mathbf{x}_{p},t)-\mathbf{v}_{p}(t)\right] \\ &+ m_{f}\frac{D\tilde{\mathbf{u}}}{Dt}\Big|_{x_{p}} + \frac{1}{2}m_{f}\frac{d}{dt}\left[\tilde{\mathbf{u}}(\mathbf{x}_{p},t)-\mathbf{v}_{p}(t)\right] \\ &+ 6\pi\mu a_{p}^{2}\int_{0}^{t}d\tau\,\frac{1}{\left[\pi\nu\left(t-\tau\right)\right]^{1/2}}\frac{d}{d\tau}\left[\tilde{\mathbf{u}}(\mathbf{x}_{p},\tau)-\mathbf{v}_{p}(\tau)\right] \end{aligned}$$

 \Rightarrow $\tilde{\mathbf{u}}(\mathbf{x}_p, t)$ fluid velocity at \mathbf{x}_p in absence of the particle

Particles Dynamics & Hydrodynamic force

• Removal of the self-disturbance \mathbf{v}_{pth} from $\mathbf{u}(\mathbf{x}, t)$

$$\tilde{\mathbf{u}}(\mathbf{x}_p, t) = \mathbf{u}(\mathbf{x}_p, t) - \mathbf{v}_{p \text{th}} \left[\mathbf{x}_p(t) - \mathbf{x}_p(t_n); Dt\right]$$

• Self-disturbance velocity evaluated in closed form

$$\mathbf{v}(\mathbf{r}, Dt) = \frac{1}{(2\pi\sigma^2)^{3/2}} \left\{ \left[e^{-\eta^2} - \frac{f(\eta)}{2\eta^3} \right] \mathbf{D}_p^n - \left(\mathbf{D}_p^n \cdot \hat{\mathbf{r}} \right) \left[e^{-\eta^2} - \frac{3f(\eta)}{2\eta^3} \right] \hat{\mathbf{r}} \right\}$$

where

$$\mathbf{r} = \mathbf{x}(t) - \mathbf{x}_p(t_n);$$
 $\eta = r/\sqrt{2}\sigma;$ $\sigma = \sqrt{2\nu(\epsilon_R + Dt)}$

and

$$f(\eta) = \frac{\sqrt{\pi}}{2} \operatorname{erf}(\eta) - \eta e^{-\eta^2}$$

Concentrated force at a fixed point

- the impulse increases linearly in time, $I(t) = |\mathbf{F}| t$
- exact solution for the perturbation field

$$u(\mathbf{r},t) = \frac{1}{4\pi\mu r} \left[\left(\frac{1}{2\eta_t^2} - 1 \right) \operatorname{erf}(\eta_t) - \frac{1}{\sqrt{\pi}\eta_t} e^{-\eta_t^2} + 1 \right]; \quad \eta_t = r/\sqrt{4\nu t}$$

 \Rightarrow The impulse converges w.r.t. σ_R/Dx and ϵ_R

Concentrated force at a fixed point

- the impulse increases linearly in time, $I(t) = |\mathbf{F}| t$
- exact solution for the perturbation field

$$u(\mathbf{r},t) = \frac{1}{4\pi\mu r} \left[\left(\frac{1}{2\eta_t^2} - 1 \right) \operatorname{erf}(\eta_t) - \frac{1}{\sqrt{\pi}\eta_t} e^{-\eta_t^2} + 1 \right]; \quad \eta_t = r/\sqrt{4\nu t}$$

 \Rightarrow The far field is independent on ϵ_R

Concentrated force at a fixed point

- the impulse increases linearly in time, $I(t) = |\mathbf{F}| t$
- exact solution for the perturbation field

$$u(\mathbf{r},t) = \frac{1}{4\pi\mu r} \left[\left(\frac{1}{2\eta_t^2} - 1 \right) \operatorname{erf}(\eta_t) - \frac{1}{\sqrt{\pi}\eta_t} e^{-\eta_t^2} + 1 \right]; \quad \eta_t = r/\sqrt{4\nu t}$$

 \Rightarrow After few σ_R the exact solution is approached

Settling from rest under gravity

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p$$
$$m_p \frac{d\mathbf{v}_p}{dt} = m_p \mathbf{g} + \mathbf{D}_p$$

Exact solution

$$\mathbf{u}(\mathbf{x},t) = \int_0^t \mathbf{G} \left[\mathbf{x} - \mathbf{x}_p(\tau), t - \tau \right] \cdot \mathbf{D}_p(\tau) \, d\tau$$

$$\mathbf{D}_p = -6\pi\mu a_p \,\mathbf{v}_p(t)$$

 \Rightarrow Note the fore-and-aft symmetry breaking at high v_t

Settling from rest under gravity

$$\mathbf{D}_p = -6\pi\mu a_p \,\mathbf{v}_p(t)$$

Settling from rest under gravity

$$\begin{aligned} \frac{d\mathbf{x}_p}{dt} &= \mathbf{v}_p \\ m_p \frac{d\mathbf{v}_p}{dt} &= m_p \mathbf{g} + \mathbf{D}_p \end{aligned}$$

$$\mathbf{D}_p = 6\pi\mu a_p \left[\tilde{\mathbf{u}}(\mathbf{x}_p, t) - \mathbf{v}_p(t) \right]$$

ERPP

Self-induced disturbance removed

$$v_p = v_t \left(1 - e^{-t/\tau_p} \right)$$

 \Rightarrow Terminal velocity better captured by the ERPP

- Remarks about turbulent simulations
 - regularization scale $\sigma_R = \eta$
 - the feedback field is everywhere *smooth*

 $\begin{aligned} Re_{\lambda} &= 50 \\ St_{\eta} &= 1, \ \Phi = 0.4 \\ N_p &= 2.200.000 \\ d_p/\eta &= 0.1 \end{aligned}$

- Remarks about turbulent simulations
 - regularization scale $\sigma_R = \eta$
 - the feedback field is everywhere *smooth*

$$Re_{\lambda} = 50$$

 $St_{\eta} = 1, \ \Phi = 0.4$
 $N_p = 2.200.000$
 $d_p/\eta = 0.1$

- Remarks about turbulent simulations
 - regularization scale $\sigma_R = \eta$
 - the feedback field is everywhere *smooth*

$$\begin{aligned} Re_{\lambda} &= 50 \\ St_{\eta} &= 1, \ \Phi &= 0.4 \\ N_{p} &= 2.200.000 \\ d_{p}/\eta &= 0.1 \end{aligned}$$

Energy spectrum

- Remarks
 - E(k) and $2\nu k^2 E(k)$ nicely smooth at small scales
 - ERPP prediction independent on N_p/N_c

Turbulent Jet

- $Re = U_b D / \nu = 3000$, domain $2\pi \times 50 R \times 60 R$
- $\Phi = 0.3 \Rightarrow$ about $N_p = 500.000$ at steady state

particles & axial velocity

particles & axial velocity

 \Rightarrow potential core almost doubled in the two-way regime

Turbulent Jet

particles & feedback on the fluid

- smooth back-reaction at turbulent/laminar interface
 - entrainment
 - evaporation rate in case of liquid droplets

Exact Regularized Point Particle method

- perturbation field due to the particles
 - based on physical arguments \Rightarrow Unsteady Stokes Solutions
 - local \Rightarrow efficient algorithms
 - smooth \Rightarrow few particles e.g. *turbulent jets*
- easy to implement
- overcomes several drawbacks of the PIC approach

P.G., F. Picano, G. Sardina, C.M. Casciola J. Phys. Conf. Ser. 318 (2011)

P.G., F. Picano, G. Sardina, C.M. Casciola, submitted to JFM, http://arxiv.org/abs/1405.6969

P.G., F. Battista, F. Picano, C.M. Casciola, in preparation

Credits: PRACE-2IP project (FP7 RI-283493) Cost Action MP0806 Particles in Turbulence ERC grant BIC Nordita

Remarks about the mass load Φ

Six dimensionless parameters
$$\left\{ Re_0; St_\eta; \frac{\rho_p}{\rho_f}; \frac{d_p}{\eta}; \Phi; N_p \right\}$$

$$St_{\eta} = \frac{1}{18} \frac{\rho_p}{\rho_f} \left(\frac{d_p}{\eta}\right)^2 \qquad \Phi = 9\sqrt{2}\pi N_p \frac{St_{\eta}^{3/2}}{Re_0^{9/4} \left(\rho_p/\rho_f\right)^{1/2}}$$

Remarks about the mass load Φ

In experiments or numerics fix $\left\{ Re_0; St_{\eta}; \frac{\rho_p}{\rho_f}; \frac{d_p}{\eta}; \Phi; N_p \right\}$

$$St_{\eta} = \frac{1}{18} \frac{\rho_p}{\rho_f} \left(\frac{d_p}{\eta}\right)^2 \qquad \Phi = 9\sqrt{2\pi} N_p \frac{St_{\eta}^{3/2}}{Re_0^{9/4} (\rho_p/\rho_f)^{1/2}}$$

In the ERPP

- smooth perturbation field
- N_p can be modified safely
- adjust Φ by changing N_p

Remarks about the mass load Φ

In experiments or numerics fix $\left\{ Re_0; St_{\eta}; \frac{\rho_p}{\rho_f}; \frac{d_p}{\eta}; \Phi; N_p \right\}$

$$St_{\eta} = \frac{1}{18} \frac{\rho_p}{\rho_f} \left(\frac{d_p}{\eta}\right)^2 \qquad \Phi = 9\sqrt{2}\pi \, \frac{N_p}{N_c} \, \frac{St_{\eta}^{3/2}}{\left(\rho_p/\rho_f\right)^{1/2}}$$

In the PIC

- $N_p/N_c \ge 1$ to achieve a smooth forcing
- $N_c \propto R e_0^{9/4}$ is fixed
- Φ can not be changed anymore!