Particle concentration in
protoplanetary discs
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Exoplanets

Planets per star with P < 85 days
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In the first 16 months the Kepler satellite detected 2321 planet candidates

253 Earth-sized (R<1.25Rg)
712 Super-Earth-sized (1.25Rg<R < 2Rg)

» 245 double systems
>
1078 Neptune-sized (2Rgy<R<6Rg) » 27 quadruple systems
>
>

84 triple systems
207 Jupiter-sized (6Rg <R<15Rg) 8 quintuple systems
71 Super-Jupiter-sized (15Rg<R)
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1 sextuple system

= Nature is very efficient at converting dust to planets



Classical picture of planet formation
Planetesimal hypothesis of Safronov (1969):

Planets form in protoplanetary discs around young stars from dust
and ice grains that stick together to form ever larger bodies

1. Dust to planetesimals
um — cm: contact forces during collision lead to sticking
cm — km: 777

2. Planetesimals to protoplanets
km — 1,000 km: gravity (run-away accretion)

3. Protoplanets to planets
Terrestrial planets: protoplanets collide (107108 years)
Gas giants: 10 Mg core accretes gas (< 107 years)




Sedimentation

» Pebbles and rocks sediment to the mid-plane of the disc

» Further growth frustrated by high-speed collisions (>1-10
m/s) which lead to erosion and bouncing

» Layer not dense enough for gravitational instability

= Need some way for particle layer to get dense enough to
initiate gravitational collapse



Particle concentration

Streaming instabilities

Pressure bumps / vortices
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1~1 ~1km, St~ 10°-10"

1~1-10 H, St~ 0.1-10 [~0.1H,St~0.01-1

Three ways to concentrate particles: (sohansen et al, 2014, arxiv:1402.1344)

» Between small-scale low-pressure eddies
(Squires & Eaton, 1991; Fessler et al., 1994; Cuzzi et al., 2001, 2008; Pan et al., 2011)

» In pressure bumps and vortices
(Whipple, 1972; Barge & Sommeria, 1995; Klahr & Bodenheimer, 2003; Joh et al., 2009a)

» By streaming instabilities
(Youdin & Goodman, 2005; Johansen & Youdin, 2007; Johansen et al., 2009b; Bai & Stone, 2010a,b,c)



Pressure bumps and zonal flows
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> Large-scale variation in turbulent viscosity of 6050200 03 51 00
. xIH
magnetorotational turbulence launches

zonal flows
(Johansen et al., 2006, 2009a; Lyra et al., 2008;
Simon et al., 2012; Dittrich et al., 2013)

> Particles are trapped in pressure bumps
surrounded by zonal flow envelope

> lonisation of protoplanetary discs may be

insufficient to sustain MHD turbulence
Gas density (320 x 320 x 32)  Particle density (10° particles)




Streaming instability

Linear and non-linear evolution of radial drift flow of meter-sized

boulders:
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Strong clumping in non-linear state of the streaming instability
(Johansen & Youdin 2007; Johansen, Youdin, & Mac Low 2009)



Particle density

1200

» Particle density up to 3000 1000k — Nocoll 64 ]
times local gas density ol — =03 ) ]
» Criterion for gravitational £ oof
g

collapse: p, 2 100p,

= Gravitational F:ontraction to 200 N{% »,&yﬁ( J{Mﬁ&h&&@%ﬂ%

form planetesimals 0
0 20 80 100
t/TO,h
3000 " s
2500F 1
. oo _2000F 1
» Maximum density increases < o0
. . . . % L 3
with increasing resolution — g
(Johansen, Lithwick, & Youdin 2012) 1000 ¢ ]
LI
0 J/"A\"A\y\/)
0 50

t/ T,

orb



Scale-by-scale convergence
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Plot shows maximum density over a given scale (averaged over time)
Points for 64 and 128% almost on top of each other
Streaming instability clumping converges scale-by-scale

Increasing the resolution increases the maximum density because density
at grid-cell level gains structure at increased resolution




Gravitational collapse
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» Particle concentration by streaming
instabilities reach at least 10,000 times

the gas density
(Johansen, Youdin, & Lithwick, 2012;
Johansen, Mac Low, & Lacerda, in preparation)

» Filaments fragment to bound pebble
clumps, with contracted radii from 50 to
200 km

» Talk by Chao-Chin Yang



Concentrating chondrules
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> Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

> Typical particle sizes considered for the streaming instability are of size 10
cm (when scaled to the asteroid belt)

= Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, in preparation)

» Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)



Concentrating chondrules
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> Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

> Typical particle sizes considered for the streaming instability are of size 10
cm (when scaled to the asteroid belt)

= Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, in preparation)

» Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)



Concentrating chondrules

Z, v Stokes number (RMS > 2.8)
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> Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

> Typical particle sizes considered for the streaming instability are of size 10
cm (when scaled to the asteroid belt)

= Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, in preparation)

» Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)



Initial Mass Function of planetesimals
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» Very-high-resolution simulations of particle concentration and
gravitational collapse yield the Initial Mass Function of pebble clumps at
the grid scale

> Nesvorny et al. (2010) assumed pure sticking and found typical outcome
to be a dominant binary with smaller lumps of material around

> Processes of sticking/bouncing/erosion/fragmentation will determine the
further collapse to planetesimals of a range of sizes

» Unexplored venue for collision physics (Jansson & Johansen, submitted)



Conclusions

Eddies Streaming instabilities

Pressure bumps / vortices

I1~m~ 1 km, St~ 10°-10" I~1-10H, St~0.1-10 [~0.1 H,St~0.01-1

» Several particle concentration mechanisms operating in
protoplanetary discs have been identified in the last decades

» The streaming instability is very efficient in absence of strong
global turbulence

» Planetesimals form by gravitational collapse and continue to
grow by accreting pebbles



