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Exoplanets

In the first 16 months the Kepler satellite detected 2321 planet candidates

I 253 Earth-sized (R≤1.25R⊕)

I 712 Super-Earth-sized (1.25R⊕<R ≤ 2R⊕)

I 1078 Neptune-sized (2R⊕<R≤6R⊕)

I 207 Jupiter-sized (6R⊕<R≤15R⊕)

I 71 Super-Jupiter-sized (15R⊕<R)

I 245 double systems

I 84 triple systems

I 27 quadruple systems

I 8 quintuple systems

I 1 sextuple system

⇒ Nature is very efficient at converting dust to planets
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Classical picture of planet formation
Planetesimal hypothesis of Safronov (1969):

Planets form in protoplanetary discs around young stars from dust
and ice grains that stick together to form ever larger bodies

1. Dust to planetesimals
µm → cm: contact forces during collision lead to sticking
cm → km : ???

2. Planetesimals to protoplanets
km → 1,000 km: gravity (run-away accretion)

3. Protoplanets to planets
Terrestrial planets: protoplanets collide (107–108 years)
Gas giants: 10 M⊕ core accretes gas (< 107 years)
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Sedimentation

I Pebbles and rocks sediment to the mid-plane of the disc

I Further growth frustrated by high-speed collisions (>1–10
m/s) which lead to erosion and bouncing

I Layer not dense enough for gravitational instability

⇒ Need some way for particle layer to get dense enough to
initiate gravitational collapse
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Particle concentration

Three ways to concentrate particles: (Johansen et al., 2014, arXiv:1402.1344)

I Between small-scale low-pressure eddies
(Squires & Eaton, 1991; Fessler et al., 1994; Cuzzi et al., 2001, 2008; Pan et al., 2011)

I In pressure bumps and vortices
(Whipple, 1972; Barge & Sommeria, 1995; Klahr & Bodenheimer, 2003; Johansen et al., 2009a)

I By streaming instabilities
(Youdin & Goodman, 2005; Johansen & Youdin, 2007; Johansen et al., 2009b; Bai & Stone, 2010a,b,c)
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Pressure bumps and zonal flows

I Large-scale variation in turbulent viscosity of
magnetorotational turbulence launches
zonal flows
(Johansen et al., 2006, 2009a; Lyra et al., 2008;

Simon et al., 2012; Dittrich et al., 2013)

I Particles are trapped in pressure bumps
surrounded by zonal flow envelope

I Ionisation of protoplanetary discs may be
insufficient to sustain MHD turbulence

Gas

Particles
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Streaming instability
Linear and non-linear evolution of radial drift flow of meter-sized
boulders:
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Strong clumping in non-linear state of the streaming instability
(Johansen & Youdin 2007; Johansen, Youdin, & Mac Low 2009)
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Particle density

I Particle density up to 3000
times local gas density

I Criterion for gravitational
collapse: ρp & 100ρg

⇒ Gravitational contraction to
form planetesimals

I Maximum density increases
with increasing resolution →
(Johansen, Lithwick, & Youdin 2012)
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Scale-by-scale convergence
Ωτf=0.3, Z=0.02, ε=0.3
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I Plot shows maximum density over a given scale (averaged over time)

I Points for 643 and 1283 almost on top of each other

⇒ Streaming instability clumping converges scale-by-scale

I Increasing the resolution increases the maximum density because density
at grid-cell level gains structure at increased resolution
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Gravitational collapse
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I Particle concentration by streaming
instabilities reach at least 10,000 times
the gas density
(Johansen, Youdin, & Lithwick, 2012;

Johansen, Mac Low, & Lacerda, in preparation)

I Filaments fragment to bound pebble
clumps, with contracted radii from 50 to
200 km

I Talk by Chao-Chin Yang
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Concentrating chondrules

I Meteorites contain up to 80% mass in chondrules of sizes 0.1–1 mm
(e.g. Krot et al., 2009)

I Typical particle sizes considered for the streaming instability are of size 10
cm (when scaled to the asteroid belt)

⇒ Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, in preparation)

I Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)
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Concentrating chondrules
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Initial Mass Function of planetesimals
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         2563, Σp =   2.4 g cm−2

         2563, Σp =   6.0 g cm−2

         2563, Σp =  12.0 g cm−2

         5123, Σp =  23.9 g cm−2

         2563, Σp =  23.9 g cm−2

         1283, Σp =  23.9 g cm−2

Binary

Asteroids (rescaled)

qM = 1.41 +/− 0.06

I Very-high-resolution simulations of particle concentration and
gravitational collapse yield the Initial Mass Function of pebble clumps at
the grid scale

I Nesvorny et al. (2010) assumed pure sticking and found typical outcome
to be a dominant binary with smaller lumps of material around

I Processes of sticking/bouncing/erosion/fragmentation will determine the
further collapse to planetesimals of a range of sizes

I Unexplored venue for collision physics (Jansson & Johansen, submitted)

dN/dM ∝ M−1.4
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Conclusions

I Several particle concentration mechanisms operating in
protoplanetary discs have been identified in the last decades

I The streaming instability is very efficient in absence of strong
global turbulence

I Planetesimals form by gravitational collapse and continue to
grow by accreting pebbles


