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Introduction

• Many industrial, atmospheric, and astrophysical phenomena
involves the interactions between small solid particles
suspended in a turbulent carrier flow.

• Two main effects:
◦ a viscous drag on the particles (dominant for small particles);
◦ external forces, such as gravity, on the particles (dominant for

large particles).

• Standard modelling treats these two limits separately and
often fails at the interface.
◦ Example: the rate at which rain is triggered in warm clouds.

• An improvement might be to combine the effects of
turbulence and gravity.

G. Falkovich, et al, Nature 419, (2002).
W. Grabowski & L.-P. Wang, Annu. Rev. Fluid Mech. 45, (2013).



Introduction

• In turbulent flows, there is an increase of the terminal velocity
of heavy particles.

• This phenomenon is mostly understood on qualitative grounds
and has been quantified only in model flows.

• Very little is known on the effect of gravitational settling on
two-particle statistics.

• Fundamental theoretical and numerical studies of the
clustering of particle pairs and of the enhancement of
collisions due to inertia usually neglect gravity.

M. Maxey, J. Fluid Mech. 174, (1987). M. Wilkinson, et al, Phys. Rev. Lett. 97, (2006).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993). O. Ayala, et al, New J. Phys. 10, (2008).
E. Balkovsky, et al, Phys. Rev. Lett. 86, (2001). J. Bec, et al, Phys. Rev. Lett. 98, (2007).
J. Davila & J. Hunt, J. Fluid Mech. 440, (2001). J. Bec, et al, Fluid Mech. 646, (2010).



Question

What is the interplay between turbulence, gravity, and particle
sizes?

Important for fluid dynamics and non-equilibrium statistical physics.



Principal Results: Summary

• Heavy particles suspended in a turbulent flow settle faster
than in a still fluid.

• This effect is due to a preferential sampling of the regions
where the fluid flows downward.

• Settling leads to an effective horizontal, two-dimensional
dynamics that increases clustering and reduce relative
velocities between particles.

• These two competing effects can either increase or decrease
the geometrical collision rates between same-size particles and
are crucial for realistic modeling of coalescing particles.



Our Approach

• We combine direct numerical simulations with theoretical
results based on standard asymptotic analysis.

• We make a systematic study of the dynamical and statistical
properties of particles as a function of
◦ the level of turbulence of the carrier flow (Reynolds number);
◦ the inertia of the particles (Stokes number);
◦ the ratio between the turbulent accelerations and gravity

(Froude number).



The Model

• The Fluid
◦ The fluid velocity u is a solution of the incompressible

Navier–Stokes equation and obtained via pseudo-spectral,
direct numerical simulations.

◦ Statistically steady, homogeneous, isotropic turbulence is
maintained by a large-scale forcing.

• The Particles
◦ Particles are much smaller than the Kolmogorov scale, much

heavier than the surrounding fluid, and with a small Reynolds
number associated to their slip velocity.

◦ Non-dimensionless numbers:
− Stokes number: St=τp/τη, where τη=

√
ν/ε.

− Froude number: Fr =ε3/4/(gν1/4), where aη = ε3/4/ν1/4.

◦ We use 10 different Stokes numbers and 5 different values of
the Froude number



The Model : Equations

• The Fluid
◦ The incompressible, forced Navier–Stokes equation:

∂tu + (u · ∇)u = −∇p + ν∇2u + f;

∇ · u = 0.

− ν is the fluid kinematic viscosity and f a large scale forcing.

• The Particles
◦ Stokes drag and gravity:

dxp
dt

= vp;

dvp
dt

= − 1

τp
[vp − u(xp, t)] + g.

− u(xp, t) is evaluated by linear interpolation.



Simulation: Details

Reλ urms ∆t η τη L TL N3 Np

460 0.189 0.0012 1.45× 10−3 0.083 1.85 9.9 20483 10× 108

290 0.185 0.003 2.81× 10−3 0.131 1.85 9.9 10243 1.28× 108

127 0.144 0.02 1.12× 10−2 0.45 2.11 14.6 2563 0.08× 108



Particle Distribution: Effect of Gravity

Snapshot of the vorticity modulus (Left; yellow = low values, green = high values) and of the particle positions for
Rλ = 130, St = 1 and three different values of the Froude number in a slice of thickness 10η, width 130η, and
height 520η. The vertical arrow indicates gravity.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Qualitative Understanding

• Define : The average settling velocity Vg = −〈Vp · êz〉.
• Statistical stationarity =⇒ Vg = τpg − 〈uz(Xp, t)〉.
• Define : The relative increase in settling velocity:

∆V = (Vg − τpg)/(τpg) = −〈uz(Xp, t)〉/(τpg)

• If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Qualitative Understanding

• Define : The average settling velocity Vg = −〈Vp · êz〉.
• Statistical stationarity =⇒ Vg = τpg − 〈uz(Xp, t)〉.
• Define : The relative increase in settling velocity:

∆V = (Vg − τpg)/(τpg) = −〈uz(Xp, t)〉/(τpg)

◦ What is its dependence on the particle Stokes number and for
different values of Fr and Rλ?

• If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.
◦ Is there a way to see this preferential sampling from the

equations of motion?

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity
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Relative increase of the settling velocity ∆V as a function of the Stokes number St for various Froude numbers, as
labeled, and Rλ = 130 (thin symbols, plain lines), Rλ = 290 (filled symbols, dashed lines) and Rλ = 460 (open

symbols, broken lines). Inset: [R
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/Fr ]1/2∆V as a function of St/[R
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Fr ] for the same data.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
◦ To leading order, the particles advected by an effective

compressible velocity field:

v = u− τp [∂tu + (u + τp g) · ∇u] .

◦ Focus on the (x , y) plane.
◦ By using isotropy and incompressibility, we obtain:

〈uz∇⊥ · v⊥〉 = τ 2
pg

〈
(∂zuz)2

〉
> 0.



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
◦ To leading order, the particles advected by an effective

compressible velocity field:

v = u− τp [∂tu + (u + τp g) · ∇u] .

◦ Focus on the (x , y) plane.
◦ By using isotropy and incompressibility, we obtain:

〈uz∇⊥ · v⊥〉 = τ 2
pg

〈
(∂zuz)2

〉
> 0.

◦ Particles preferentially cluster (negative divergence), on
average, in the (x , y) plane, at points where the fluid velocity
is vertically downwards (uz<0).

L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Quantitative Understanding
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∆V ∝ τητp
〈
(∂zuz)2

〉
∝ St

Assumptions & Algorithm:

• Relate Vg to 〈uz∇⊥ · v⊥〉.
• Hence 〈uz (Xp, t)〉 ∝ τη〈uz∇⊥ · v⊥〉.

G. Falkovich, et al, Nature 419, (2002).

∆V ∝ R
3/4
λ Fr 5/3St−2

Assumptions & Algorithm:

• Ballistic motion vertically: L/Vg � τL.

• Effective horizontal dynamics.

Valid:

• St � R
1/2
λ

Fr and Fr � R
1/2
λ

.

I. Fouxon & P. Horvai, Phys. Rev. Lett. 100, (2008).



Small-scale, Two-particle Statistics

• Describe the evolution of pair separations in terms of ∇u.

• Vg � uη: the particles travel η in a time shorter than τη.

• Rescale time by τη(Vg/uη) and space by η:

d2R

ds2
' − 1

S̃

[
dR

ds
− R · σ(s)

]
,

where σ is a Gaussian tensorial noise with co-variance
〈σij(s)σk`(s ′)〉 = (ν/ε)〈∂iuj∂ku`〉δ(s − s ′).

• The effective Stokes number S̃ = St (uη/Vg ).

• Vg � uη: small-scale two-particle statistics depend only on S̃ .

• When ∆V � 1, S̃ ' Fr ; the statistics become independent of
St when St � Fr .



Observables

D2 : The Correlation Dimension

• An important observable measuring particle clustering is the
correlation dimension D2 of their spatial distribution.

• It is given by P2(r) ∝ rD2 for r � η, where P2(r) is the
probability that two particles are within a distance r .

The Approaching Rate

• κ(r)=−〈w θ(−w)| |R|= r〉 (dP2/dr), where w =d|R|/dt is
the longitudinal velocity difference between particles, θ the
Heaviside function, and 〈·〉 the average over all particle
separations R

• This last quantity behaves also as a power of r for r � η with
an exponent ξ1 given by the first-order structure function of
particle velocities.

• This implies that κ(r) ∼ rγ with γ = ξ1 +D2 − 1.

K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



D2 : Correlation Dimension
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Correlation dimension D2 of the particle distribution as a function of the Stokes number for Rλ = 460 and various
Froude numbers as labeled. Smaller Reynolds numbers (not shown here) display a similar behavior.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Approaching Rates
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Exponent of the velocity difference ξ1 = γ −D2 + 1 as a function of the Stokes number for different Fr and
Rλ = 460. Inset: difference between the approaching rate exponent γ associated to the different values of Fr and
that associated to particles feeling no gravity (Fr =∞).

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Understanding Approaching Rates

• κ(r) ∼ rγ with γ = ξ1 +D2 − 1.

• For Fr =∞, ξ1 = 1 at small St (tracers) and ξ1 = 0 for
St →∞ (scale-independent velocity differences).

• When Fr decreases, the effective Stokes number decreases, so
that particles get closer to tracers of the effective flow and
ξ1 → 1.

M. Wilkinson, et al., Phys. Rev. Lett. 97, 048501 (2006).
J. Bec, et al, J. Fluid Mech. 646, 527 (2010).
J. Bec, et al, Phys. Fluids 17, 073301 (2005).



Approaching Rates: Competing Mechanisms

• The two mechanisms determining the rate at which particles
collide, namely preferential concentration and large velocity
differences, are thus affected in a competing manner by
gravity.

• The enhancement of particle clustering takes over the
decrease of velocity differences when St . Fr .

• Hence, γ(Fr) < γ(∞) for St . Fr , indicating that the
collision rates between same-size particles are larger in the
presence of gravity.

• These corrections are responsible for an important increase of
the geometrical collision rate.
◦ Example: In the settings of a highly-turbulent cloud, namely

Fr = 0.3 and St = 0.4, the collision rate doubles when the
effect of gravity is included.



Conclusions and Perspectives

• Heavy particles suspended in a turbulent flow settle faster
than in a still fluid.

• This effect stems from a preferential sampling of the regions
where the fluid flows downward and is quantified as a function
of the level of turbulence, of particle inertia, and of the ratio
between gravity and turbulent accelerations.

• By using analytical methods and detailed numerical
simulations, settling is shown to induce an effective horizontal
two-dimensional dynamics that increases clustering and reduce
relative velocities between particles.

• These two competing effects can either increase or decrease
the geometrical collision rates between same-size particles and
are crucial for realistic modeling of coalescing particles.


