
Introduction to the PDC Environment
Radovan Bast

PDC Center for High Performance Computing & Department of Theoretical
Chemistry and Biology, KTH Royal Institute of Technology, Stockholm

http://rbast.github.io/talks/pdc-env-2014/

1 / 60

http://rbast.github.io/talks/pdc-env-2014/

Thanks
Slides are based on material by Izhar ul Hassan and
Henric Zazzi.
A. Turner, X. Guo, L. Axner, M. Filipiak, Best Practice
Guide - Cray XE/XC (V4.1), 2013 (http://www.prace-
ri.eu/Best-Practice-Guide-Cray-XE-XC-HTML).
http://software-
carpentry.org/v5/novice/shell/index.html

2 / 60

http://www.prace-ri.eu/Best-Practice-Guide-Cray-XE-XC-HTML
http://software-carpentry.org/v5/novice/shell/index.html

Outline
System architecture: Milner (CPU) and Zorn (GPU)
System access
Unix shell (bash)
File systems and permissions
Programming environment
How to run programs
Performance analysis and debugging
How to get help

3 / 60

Milner Cray XC30
Login node: milner.pdc.kth.se
One computing cabinet
120 compute nodes
20 cores per node, divided between 2 sockets with 10
cores each
Intel Ivy Bridge 10 core processors at 2.5 GHz
2400 compute cores
Cray Aries interconnect
One storage cabinet
12 service nodes
Aggregate peak performance is 48 TF
Aggregate compute memory is 3.75 TB (32 GB per
node)
Lustre file system with 150 TB
HPC optimized Cray Linux Environment based on
SuSE Linux

4 / 60

Milner
Blade with 4 nodes
20 cores per node
Hyperthreading: up to 40 MPI processes per node (default)

5 / 60

Zorn GPU cluster
Login node: zorn.pdc.kth.se
8 Nodes with 92 GB RAM, 2 CPU Intel Xeon E5620
(Nehalem/Westmere), 3 NVIDIA Tesla M2090, Nvidia
CUDA Toolkit V.5.5 (default queue)
1 Node with 48 GB RAM, 2 CPU Intel Xeon E5620
(Nehalem/Westmere), 1 NVIDIA Tesla K20, 1 NVIDIA
Tesla C2050, Nvidia CUDA Toolkit V.5.5 ("kepler"
queue)
QDR Infiniband interconnect
Lustre file system with 15 TB
CentOS 6.5 derived from Red Hat Enterprise Linux

6 / 60

System access

7 / 60

System access
PDC uses SSH together with Kerberos for authentication and login
Kerberos protocol for authentication developed at MIT
Non-US version developed at KTH
Uses tickets to authenticate

Kerberos jargon
Ticket: proof of identity encrypted with a secret key for the particular
service requested (tickets have a lifetime)
Realm: collection of resources that authenticate against a central
user/service database
Principal: unique identity to which Kerberos assigns tickets
Key Distribution Center (KDC): service which stores encrypted secret keys

8 / 60

Kerberos
Avoids storing passwords locally or sending them over the internet
Avoids re-typing passwords
Involves a trusted 3rd-party
Built on symmetric-key cryptography
Offers less attack vectors than SSH with passwords
Kerberos v5 software (Heimdal or MIT) needed to get Kerberos tickets
Need kerberized SSH software that supports GSSAPI with KeyExchange
For installation instructions see
https://www.pdc.kth.se/resources/software/login-1

9 / 60

https://www.pdc.kth.se/resources/software/login-1

Linux Installation:
https://www.pdc.kth.se/resources/software/login-
1/linux/

Login

without editing ~/.ssh/config
kinit --forwardable user@NADA.KTH.SE
ssh -o GSSAPIKeyExchange=yes -o GSSAPIAuthentication=yes \
 -o GSSAPIDelegateCredentials=yes user@machine.pdc.kth.se

with editing ~/.ssh/config; see PDC web
kinit --forwardable user@NADA.KTH.SE
ssh user@machine.pdc.kth.se

after editing krb5.conf (see PDC web) you can drop the realm
kinit user
ssh user@machine.pdc.kth.se

Kerberos

10 / 60

https://www.pdc.kth.se/resources/software/login-1/linux/

It is convenient to insert the following into ~/.ssh/config:

Hosts we want to authenticate to with Kerberos
Host *.kth.se *.kth.se.
User authentication based on GSSAPI is allowed
GSSAPIAuthentication yes
Key exchange based on GSSAPI may be used for server authentication
GSSAPIKeyExchange yes

Hosts to which we want to delegate credentials. Try to limit this to
hosts you trust, and were you really have use for forwarded tickets.
Host *.csc.kth.se *.csc.kth.se. *.nada.kth.se *.nada.kth.se. *.pdc.kth.se *.pdc.kth.se.
Forward (delegate) credentials (tickets) to the server.
GSSAPIDelegateCredentials yes
Prefer GSSAPI key exchange
PreferredAuthentications gssapi-keyex,gssapi-with-mic

All other hosts
Host *

For the configuration of krb5.conf, see
https://www.pdc.kth.se/resources/software/login-1

11 / 60

https://www.pdc.kth.se/resources/software/login-1

Windows PuTTY (only PuTTY downloaded from this link works
at PDC)
https://www.pdc.kth.se/resources/software/login-
1/windows/putty
SecureCRT
https://www.pdc.kth.se/resources/software/login-
1/windows/securecrt
We prefer PuTTY because we prefer to pay less license
fees
Another option is CygWin

Kerberos

12 / 60

https://www.pdc.kth.se/resources/software/login-1/windows/putty
https://www.pdc.kth.se/resources/software/login-1/windows/securecrt

Windows

Kerberized PuTTY

13 / 60

Mac OS X Mac OS X Lion 10.7.2 and above come with Heimdal
and kerberized SSH
Mac OS X Snow Leopard comes with MIT Kerberos and
kerberized SSH
For configuration of see
https://www.pdc.kth.se/resources/software/login-
1/macintosh

Kerberos

14 / 60

https://www.pdc.kth.se/resources/software/login-1/macintosh

Working with Kerberos
get a new forwardable ticket
kinit --forwardable user@NADA.KTH.SE

list available tickets
klist

destroy tickets
kdestroy

change password
kpasswd

15 / 60

Good practice

Only type your password on your local machine that has an up-to-date OS
and that you trust

16 / 60

Bad practice

Do not kinit on a remote machine

PDC accounts cannot be shared

17 / 60

Introducing the unix shell

18 / 60

Introducing the unix shell
We are greeted with a command-line interface (CLI)
Teleported back to the 70ies

$ ssh user@milner.pdc.kth.se
Last login: Fri Aug 8 10:14:59 2014 from example.com
user@milner-login1:~> _

CLI often more efficient than GUI
High action-to-keystroke ratio (expense: terse and "cryptic")
Creativity through pipelines
System is configured with text files
Calculations are configured and run using text files
Good for working over network
Good for reproducibility
Good for unsupervised workflows

19 / 60

Bash: Files and directories
Command pwd tells me where I am. After login I am in the "home"
directory:

user@machine:~$ pwd
/afs/pdc.kth.se/home/u/user

I can change the directory with cd:

user@machine:~$ cd tmp/talks/
user@machine:~/tmp/talks$ pwd
/afs/pdc.kth.se/home/u/user/tmp/talks

I can go one level up with cd ..

List the contents with ls -l:

user@machine:~/tmp/talks$ ls -l
total 237
drwx------ 3 user csc-users 2048 Aug 17 15:21 img
-rw------- 1 user csc-users 18084 Aug 17 15:21 pdc-env.html
-rw------- 1 user csc-users 222051 Aug 17 15:22 remark-latest.min.js

20 / 60

Files and directories form a tree:

├─ img
│ ├─ kerberos
│ │ ├─ computer.png
│ │ ├─ kerberos-bad.png
│ │ ├─ kerberos-good.png
│ │ ├─ kerberos.svg
│ │ ├─ laptop.png
│ │ └─ putty-kerberos.png
│ ├─ xc30-blade.png
│ └─ xc30-cabinet.jpg
├─ pdc-env.html
└─ remark-latest.min.js

We can explore the tree with ls, and cd:

user@machine:~/tmp/talks$ ls -l img/
total 343
drwx------ 2 user csc-users 2048 Aug 17 15:21 kerberos
-rw------- 1 user csc-users 310579 Aug 17 15:21 xc30-blade.png
-rw------- 1 user csc-users 37812 Aug 17 15:21 xc30-cabinet.jpg

All these commands bring you back to home:

$ cd $HOME
$ cd ~
$ cd
$ cd /afs/pdc.kth.se/home/u/user

21 / 60

Bash: Creating directories and files
We create a new directory called "results" and change to it:

$ mkdir results
$ cd results

Creating and editing files
Easy but not powerful:

$ nano draft.txt

More powerful: Emacs or Vi(m):

$ emacs draft.txt
$ vi draft.txt
$ vim draft.txt # this is Vi "improved"

22 / 60

Copying, moving, renaming, and deleting
copy file
$ cp draft.txt backup.txt

recursively copy directory
$ cp -r results backup

move/rename file
$ mv draft.txt draft_2.txt

move/rename directory
$ mv results backup

move directory one level up
$ mv results ..

remove file
$ rm draft.txt

remove directory and all its contents
$ rm -r results

From the Unix point of view, deleting is forever!

23 / 60

Bash: History and tab completion
From the Unix point of view, deleting is forever!

$ history

1860 vi /home/user/devel/gpunch/src/twoints/EriBlock.cpp
1861 cd ..
1862 git grep GenPrimSSSD
1863 vi src/twoints/EriBlock.h
1864 find . | grep SSSD
1865 vi ./src/twoints/GenPrimSSSD.h
1866 git pull
1867 cd build/
1868 make -j12

Commands are numbered, I can repeat a command by number:

!1864

Use the tab key for tab completion

24 / 60

Bash: Finding things
Extract lines which contain an expression with grep:

extract all lines that contain "fixme"
$ grep fixme draft.txt

Unix commands have many options/flags - examine them with man:

$ man grep

Another useful command is apropos - try it

Find files with find:

$ find ~ | grep lostfile.txt

We can pipe commands and filter results with |

$ grep energy results.out | sort | uniq

25 / 60

Bash: Redirecting output
Redirect output to a file:

$ grep energy results.out | sort | uniq > energies.txt

Append output to a file:

$ grep dipole results.out | sort | uniq >> energies.txt

Print contents of a file to screen:

$ cat results2.txt

Append contents of a file to another file:

$ cat results2.txt >> results_all.txt

26 / 60

Bash: Writing shell scripts
#!/usr/bin/env bash

here we loop over all files that end with *.out
for file in *.out; do
 echo $file
 grep energy $file
done

We make the script executable and execute it:

make it executable
$ chmod u+x my_script

run it
$./my_script

27 / 60

Bash: Passing arguments to scripts
#!/usr/bin/env bash

echo $1
echo $2
echo $3 $2 $1

Arguments are numbered with $1, $2, $3, etc.

We can now call the script with:

$./my_script foo bar raboof

foo
bar
raboof bar foo

28 / 60

File systems and permissions

29 / 60

File systems at PDC
AFS (Andrew File System)

distributed
global
backup

Lustre (Linux cluster file system)

distributed
high-performance
no backup

30 / 60

AFS
Andrew File System
Named after the Andrew Project (Carnegie Mellon University)
Distributed file system
Homogeneous, location-transparent file name space
Security and scalability
Accessible "everywhere" (remember that when you make your files
readable/writeable!)
Access via Kerberos tickets and AFS tokens
Your PDC home directory is located in AFS, example:

/afs/pdc.kth.se/home/u/user

OldFiles mountpoint (created by default) contains a snapshot of the files as
they were precisely before the last nightly backup was taken.

/afs/pdc.kth.se/home/u/user/OldFiles

By default you get a very limited quota (0.5 GB) but you can ask for more

31 / 60

AFS permissions
You probably know about Unix file permissions (chown, chmod):

-rw-r--r-- 1 user csc-users 3153 Feb 20 11:04 intro_pdc.rst
-rw-r--r-- 1 user csc-users 175 Feb 16 20:50 Makefile

AFS permissions work differently:

$ fs listacl
Access list for . is
Normal rights:
 user:remote-users rlidwka
 system:anyuser l
 user rlidwka

Google "AFS ACL" to find out how to change permissions.
Example: give user "alice" read permissions for the current directory:

$ fs setacl . alice read

Always remember that AFS is global.

32 / 60

Lustre
Parallel distributed file system
Large-scale cluster computing
High-performance
/cfs/milner
/cfs/zorn
Unix permissions
Not global

33 / 60

Overview: PDC storage
/afs

Home
Small, quota
Backup
AFS permissions
Not good for temporary job files

/cfs

Large, no quota (but please be considerate and do not fill up the disk)
No backup
Unix permissions
Good for temporary job files
Submit jobs from /cfs

34 / 60

Programming environment

35 / 60

Working with modules
At PDC we use the module environment.
Modules are used to load specific software into your environment.

list all available modules
$ module avail

show information about a module
$ module show fftw/3.3.0.4

load a module
$ module load fftw/3.3.0.4

list currently loaded modules
$ module list

swap modules
$ module swap PrgEnv-cray PrgEnv-intel

unload module
$ module unload fftw/3.3.0.4

36 / 60

$ module list # on Milner

Currently Loaded Modulefiles:
 1) modules/3.2.6.7
 2) nodestat/2.2-1.0501.47138.1.78.ari
 3) sdb/1.0-1.0501.48084.4.48.ari
 4) alps/5.1.1-2.0501.8471.1.1.ari
 5) MySQL/5.0.64-1.0000.7096.23.2
 6) lustre-cray_ari_s/2.4_3.0.80_0.5.1_1.0501.7664.12.1-1.0501.14255.11.3
 7) udreg/2.3.2-1.0501.7914.1.13.ari
 8) ugni/5.0-1.0501.8253.10.22.ari
 9) gni-headers/3.0-1.0501.8317.12.1.ari
 10) dmapp/7.0.1-1.0501.8315.8.4.ari
 11) xpmem/0.1-2.0501.48424.3.3.ari
 12) hss-llm/7.1.0
 13) Base-opts/1.0.2-1.0501.47945.4.2.ari
 14) craype-network-aries
 15) craype/2.04
 16) cce/8.2.3
 17) cray-libsci/12.1.3
 18) pmi/5.0.1-1.0000.9799.94.6.ari
 19) rca/1.0.0-2.0501.48090.7.46.ari
 20) atp/1.7.1
 21) PrgEnv-cray/5.1.29
 22) craype-ivybridge
 23) cray-mpich/6.2.1
 24) slurm
 25) openssh/5.3p1-with-pam-gsskex-20100124
 26) openafs/1.6.6-3.0.80-0.5.1_1.0501.7664-cray_ari_s
 27) heimdal/1.5.2
 28) snic-env/1.0.0

37 / 60

Modules take care of setting proper environment variables.
The module system does nothing which you could not do by setting
environment variables by hand, but you probably want the help of the
modules system.

$ module show fftw/3.3.0.4

/opt/cray/modulefiles/fftw/3.3.0.4:

setenv FFTW_VERSION 3.3.0.4
setenv CRAY_FFTW_VERSION 3.3.0.4
setenv FFTW_DIR /opt/fftw/3.3.0.4/sandybridge/lib
setenv FFTW_INC /opt/fftw/3.3.0.4/sandybridge/include
prepend-path PATH /opt/fftw/3.3.0.4/sandybridge/bin
prepend-path MANPATH /opt/fftw/3.3.0.4/share/man
prepend-path CRAY_LD_LIBRARY_PATH /opt/fftw/3.3.0.4/sandybridge/lib
setenv PE_FFTW_REQUIRED_PRODUCTS PE_MPICH
prepend-path PE_PKGCONFIG_PRODUCTS PE_FFTW
setenv PE_FFTW_TARGET_sandybridge sandybridge
setenv PE_FFTW_TARGET_x86_64 x86_64
setenv PE_FFTW_TARGET_interlagos interlagos
...

38 / 60

Compiling code on Milner
Available compiler sets: Cray, GNU, and Intel
By default, the Cray compiler set is loaded
We want you to use the Intel compiler
Use module swap to switch to Intel

select Intel
$ module swap PrgEnv-cray PrgEnv-intel

Module cray-libsci provides BLAS, LAPACK, BLACS, and SCALAPACK
Module cray-mpich provides MPI
On Cray we compile using compiler wrappers: ftn, cc, and CC

39 / 60

Using
compiler
wrappers
on Milner

Fortran

$ gfortran [flags] source.F90 # wrong
$ ifort [flags] source.F90 # wrong

correct
$ ftn [flags] source.F90

C

$ gcc [flags] source.c # wrong
$ icc [flags] source.c # wrong

correct
$ cc [flags] source.c

C++

$ g++ [flags] source.cpp # wrong
$ icpc [flags] source.cpp # wrong

correct
$ CC [flags] source.cpp

Same wrappers for MPI and sequential code

40 / 60

Advice for
portability:
protect MPI
code with
the pre-
processor

program hello

 implicit none

#ifdef ENABLE_MPI
 include 'mpif.h'
#endif

 integer :: irank, num_proc, ierr, tag

#ifdef ENABLE_MPI
 integer :: status(MPI_STATUS_SIZE)

 call MPI_INIT(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, num_proc, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, irank, ierr)
#else
 irank = 0
 num_proc = 1
#endif

 print *, 'rank ', irank, 'out of', num_proc, 'proc'

#ifdef ENABLE_MPI
 call MPI_FINALIZE(ierr)
#endif

end program

$ ftn -DENABLE_MPI source.F90

41 / 60

Compiling
OpenMP
code on
Milner

Intel

$ ftn -openmp source.F90
$ cc -openmp source.c
$ CC -openmp source.cpp

Cray

$ ftn -h omp source.F90
$ cc -h omp source.c
$ CC -h omp source.cpp

GNU

$ ftn -fopenmp source.F90
$ cc -fopenmp source.c
$ CC -fopenmp source.cpp

42 / 60

How about math libraries?
Cray will automatically link to BLAS, LAPACK, BLACS, and SCALAPACK
No need to worry about that

43 / 60

Compiling
CUDA code
on Zorn

Zorn uses the module system as well

check available modules
$ module avail

load the CUDA kit
$ module load cuda/5.5

compile the source
$ nvcc mysource.cc

No compiler wrappers for Fortran/C/C++. Sources are
compiled in the "traditional" way.

44 / 60

How to run programs

45 / 60

How to run programs
After login we are on the login node
A login node is for submitting jobs, editing files, and compiling small
programs
We never run calculations interactively on the login node
We want balanced load of the resources
Fair share according to time allocations
Rather we use a queuing/batch system

Only persons/groups belonging to a Charge Account Category (CAC; in
other words time allocation) can submit
You belong to the CAC "summer-2014" with 8000 node hours

46 / 60

Queuing systems at PDC
Milner

Slurm
Either submit a batch script
Or book an interactive node just for you

Zorn
TORQUE/Moab/PBS
Can only submit a batch script
Cannot book an interactive node

47 / 60

Slurm (Milner)
submit the job
$ sbatch script.slurm

see information about all your jobs
$ squeue -u $USER

remove or stop a job
$ scancel [jobid]

PBS (Zorn)
submit the job
$ qsub script.pbs

see information about all your jobs
$ qstat -u $USER

remove or stop a job
$ qdel [jobid]

48 / 60

Example Slurm job script (Milner)
#!/bin/bash --login

name of the job
#SBATCH -J my_job

wall-clock time given to this job (20 minutes)
#SBATCH -t 00:20:00

number of nodes
#SBATCH -N 2

number of MPI processes per node (the following is actually the default)
#SBATCH --ntasks-per-node=40

number of MPI processes
#SBATCH -n 80

#SBATCH -o stdout.txt
#SBATCH -e stderr.txt

run the executable named my_exe
and write the output to my_output
cd $SLURM_SUBMIT_DIR
aprun -n 80 ./my_exe > my_output 2>&1

In this case the job script is a Bash script but it can be Python or Perl
instead

49 / 60

Running with or without hyperthreading
Hyperthreading is on by default on Milner
System sees 40 "logical" cores per node but only 20 physical cores are
present
You can turn hyperthreading off
This is important if you study performance

no hyperthreading
a node appears as 20 cores
$ aprun -j 1 [other flags] [program]

hyperthreading enabled (this is the default)
a node appears as 40 cores
$ aprun -j 2 [other flags] [program]

50 / 60

OpenMP usage
With hyperthreading

#!/bin/bash --login

#SBATCH -J my_job
#SBATCH -t 00:20:00
#SBATCH -N 1
#SBATCH -n 40
#SBATCH -o stdout.txt
#SBATCH -e stderr.txt

export OMP_NUM_THREADS=40

cd $SLURM_SUBMIT_DIR
aprun -j 2 -n 1 -N 1 -d $OMP_NUM_THREADS ./my_exe > my_output

51 / 60

OpenMP usage
Without hyperthreading

#!/bin/bash --login

#SBATCH -J my_job
#SBATCH -t 00:20:00
#SBATCH -N 1
#SBATCH -n 20
#SBATCH -o stdout.txt
#SBATCH -e stderr.txt

export OMP_NUM_THREADS=20

cd $SLURM_SUBMIT_DIR
aprun -j 1 -n 1 -N 1 -d $OMP_NUM_THREADS ./my_exe > my_output

52 / 60

Booking an interactive node (Milner only)
You can request an interactive node with salloc:

$ salloc

salloc: Granted job allocation 21223

Then you get a node for interactive use.
You can log out with exit:

$ exit

salloc: Relinquishing job allocation 21223
salloc: Job allocation 21223 has been revoked.

53 / 60

Example PBS job script (Zorn)
#!/bin/bash --login

name of the job
#PBS -N my_job

wall-clock time given to this job (20 minutes)
#PBS -l walltime=00:20:00

number of nodes
#PBS -l nodes=1

#PBS -o stdout.txt
#PBS -e stderr.txt

run the executable named my_exe
cd $PBS_O_WORKDIR
./my_exe > my_output

54 / 60

Important note
Submit all jobs from /cfs

submit from here
/cfs/milner/scratch/u/user

and not from your home directory on /afs

not here
/afs/pdc.kth.se/home/u/user

55 / 60

Performance analysis
CrayPAT
Allinea Performance Reports

Debugging
DDT
TotalView
Cray ATP
gdb

56 / 60

How to get help

57 / 60

PDC support
Many questions can be answered by reading the web documentation:
https://www.pdc.kth.se/support
Preferably contact PDC support by email: support@pdc.kth.se
Or by phone: +46 (0)8 790 7800
You can also make an appointment to come and visit.
Your email support request will be tracked - you get a ticket number.
For follow-ups/replies always include the ticket number - they look like
this: [SNIC support #12345]

58 / 60

https://www.pdc.kth.se/support

How to report problems
Do not report new problems by replying to old/unrelated tickets.
Split unrelated problems into separate email requests.
Use a descriptive subject in your email (unhelpful subject line: "problem").
Give your PDC user name.
Be as specific as possible.
For problems with scripts/jobs, give an example. Either send the example
or make it accessible to PDC support.
Make the problem example as small/short as possible.
Provide all necessary information to reproduce the problem.
If you want the PDC support to inspect some files, make sure that the files
are readable.
Do not assume that PDC support personnel have admin rights to see all
your files or change permissions.

59 / 60

That's all folks - enjoy the summer school!

Slideshow created using remark.

60 / 60

http://github.com/gnab/remark

