

Attendance, two weeks:	
Lectures and labs:	3.0 ECTS
Get Lab attendance sheet sign	ed !
Project, finished Fall '13:	4.5 ECTS
Grade: Grad .: P,F Undergrad.	: E A
Support:	
Lab assistant, Project advisor,	Examiner
Project:	
For some application and HP	<i>C</i> architecture of your choice:
• Develop efficient program f	or non-trivial problem
• Demonstrate and report how	efficient it is.
Demonstrate and report now	
4.5 ECTS = 3 weeks of work a	<i>incl.</i> report writing

The project is *not* about:

- Substantial development of new code.
- Scientific results obtained with code

So:

Prioritize measurements and analysis/interpretation! Demonstrate use of tools (profiling, ...), and simple performance model.

NO TIME for development of new significant code.

Examples:

* Parallelize a code you know and/or work with;

5

- choose interesting part.
- * Write a simple code for key algorithm of bigger solution process
- * Write a simple code for a simple problem

Now – during lab-afternoons • Discuss with instructors & course participants, form groups of size G. • Define project and choose tutor: Michael, Jonathan, Erwin, Stefano, ... • Write very short synopsis, check with supervisor ! • Submit synopsis to *summer-info@pdc.kth.se* before end of HPC course Later -• Start the work *ASAP*: • Finish the work; Get in touch with tutor !! • Submit report to *tutor*. The report will be graded and sent back with comments; you may have to complete some parts and hand in again. We need email and paper mail address! • KTH students: LADOK • Other students: Certificate will be sent to you 6 1. Develop initial version of program;

2. Develop approximate Performance model = theoretical prediction:				
	time = $f(\text{problem size } N, \#\text{processors } P, \text{problem partitioning parameters, } \dots)$			
	Try to assess the <i>communication</i> and <i>computation</i> times separately.			

3. *Measure* performance, e.g. t = f(N,P,...), for different problem sizes, if relevant x = wall clock time start to finish, (*not* CPUtime), ...

Size \ # proc	1	2	4	n
N_1	х	Х	х	Х
N_2	х	х	Х	Х
$N_{\rm M}$	х	Х	х	х

4. If suitable, plot "speedup" and/or "efficiency", MFLOPS?, ...

- Make several measurements to discover variations discuss sources of variability. (interactive nodes, dedicated,...)
- Compare w. prediction; Interpret: Why these numbers?
- Identify "bottlenecks" by profiling tools; find remedy & make changes
- Check improvement by measurements
- Write report with description of problem, *algorithm*, and design decisions, pertinent graphs of measurements and profiling, "before and after".

Other

- Group size G: G = 2 recommended.
- "Standard" grade C. A requires exceptional work
 - Requirements for grade \geq C increase with G.
- Proposed schedule
 - < 14-09-28 First iteration: status report, quick feedback from advisors
 - < 14-10-26 Second (final ?) iteration, results, quick feedback/grading

9

- ----- 14-11-09 -----
- > 14-12-10 ... evaluation may take a while
- > 2015-01-01 evaluation turnaround time may be very long

•Report:

- Background, formulas, relevant problem sizes, ...:
- Algorithm, parallelization principle,...
- •"Embarrassingly parallel" OK
- Performance model and measurements.
- Graphs, and textual description of what the graphs show, what we learn from them
- Interpretation: WHY these numbers?

	Various Information
•	 Certificates will be issued to all successful students
•	 Tutors will be available for lab sessions Ask them questions But they will also ask you!
KTH [®]	• Labs in groups of 2-3 people
E OCH KONST SE	• Door access code for lab room: 1359
PDC Center for igh Performance Computing 4	 Wireless Eduroam If you don't have eduroam you can use KTHOPEN Passwords will be distributed as needed
•	All material available via the course homepage <u>http://agenda.albanova.se/</u> conferenceDisplay.py2confId=4384

Heat Reuse Project

- Background: today around 1.3 MW used at PDC
- Project started 2009 to re-use this energy

PDC Center for Performance Computing

- Goals:
- -Save cooling water for PDC -Save heating costs for KTH -Save the environment
- Use district cooling pipes for heating when no cooling is required
- No heat pumps
- Starting with Cray
- First phase of Cray heats the KTH Chemistry building

19

FLOPS						
 FLoating Point Operations per Second Most commonly used performance indicator for paralle computers Typically measured using the Linpack benchmark 						
 Most useful for scientific applications 	Name	Flops				
 Other benchmarks include SPEC, NAS, stream (memory) 	Yotta	10 ²⁴				
	Zetta	10 ²¹				
	Exa	10 ¹⁸				
	Peta	10 ¹⁵				
	Tera	10 ¹²				
	Giga	10 ⁹				
	Mega	10 ⁶				
			32			

Top500 Nr 1: "Tianhe-2"

- NUDT, China
- Intel IvyBridge and PHI
- 3,120,000 cores (2,736,000 MIC cores)
- 33.8 PF Linpack (54.9 PF theoretical peak)

