
Performance Engineering

Pekka Manninen, Ph.D.

Cray Inc.
manninen@cray.com

Certain parts of the material Cray Inc proprietary -

do not reuse or redistribute without permission, please

PDC Summer School: Introduction to High-Performance Computing

August 18-29, 2014 - KTH, Stockholm, Sweden

Performance engineering

We want to get the most science
and engineering through a
supercomputing system as
possible.

The more efficient codes are, the
more productive scientists and
engineers can be.

/
pi
1 9

e

3
9

Performance analysis

To optimize code we must know what is taking the time

Application Input Output

Profile Data

Top time consuming routines

Load balance across processes and

threads

Parallel overhead

Communication patterns

Hardware utilization details

Performance engineering – overview

Wednesday

9.15-9.45
Introduction to performance engineering &

briefly about ”optimal porting”

10.00-10.15 Coffee break

10.15-11.00 Application performance analysis

11.00-11.15 Break

11.15-12.00 Improving node-level efficiency

12.00-13.00 Lunch break

13.00-13.45 Improving parallel scalability

13.45-14.00 Break

14.00-17.00
Hands-on session: application profiling &

optimization (coffee being served at 15:00)

+ A wrap-up & lab session review on Friday morning at 8:30

INTRODUCTION TO PERFORMANCE
ENGINEERING

Lecture 1:

Code optimization

● Obvious benefits

● Better throughput => more science

● Cheaper than new hardware

● Save energy, compute quota etc.

● ..and some non-obvious ones

● Collaboration opportunities

● Potential for cross-disciplinary research

● Deeper understanding of application

Code optimization

● Several trends making code optimization even more
important

● More and more cores

● CPU’s vector units getting wider

● The gap between CPU and memory speed ever increasing

● Datasets growing rapidly but disk I/O performance lags behind

Code optimization

● Adapting the problem to the underlying hardware

● Combination of many aspects

● Effective algorithms

● Implementation: Processor utilization & efficient memory use

● Parallel scalability

● Important to understand interactions

● Algorithm – code – compiler – libraries – hardware

● Performance is not portable!

Memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Physical memory

Remote memory (over interconnect)

File system disks

<= 1

~4

~10

~25

O(102)

O(105...6)

 O(100 B)

O(10 kB)

O(1 MB)

O(10 MB)

GB’s

TB’s

100s GB’s O(103)

Why does scaling end?
W

al
l-

cl
o

ck
 t

im
e

MPI tasks

Ideal

Reality

1

2

4

8

16

32

Sp
ee

d
-u

p

MPI tasks

Ideal

Reality

Why does scaling end?

● Amount of data per process small - computation takes
little time compared to communication

● Amdahl’s law in general
● E.g., single-writer or stderr I/O

● Load imbalance

● Communication that scales badly with Nproc

● E.g., all-to-all collectives

● Congestion of network – too many messages or lots of
data

Not going to touch the source code?

● Find the compiler and its compiler flags that yield the
best performance

● Employ tuned libraries wherever possible

● Find suitable settings for environment parameters

● Mind the I/O
● Do not checkpoint too often

● Do not ask for the output you do not need

Compiler man pages (on Cray)

● The cc, CC, and ftn man pages contain information
about the compiler driver commands

● Cray compiler: man craycc, crayCC, and crayftn

● GNU compiler: man gcc, g++, and gfortran

● PGI compiler: man pgf90, man pgcc, man pgCC
● Intel: no man page available, but do ifort/icc –help

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with CCE

● --version option on a cc, CC, or ftn command with GNU

Recommended compiler optimization flags

Compiler Safe compromise Aggressive

PGI -fast -fast -O3 -Mipa=fast,inline

Cray (default level) -O3 -hfp3

Intel -O3 -Ofast -ipa -unroll-

aggressive -align -fp-

model fast=2

GNU -O3 -Ofast -funroll-all-loops

On Cray systems, the CPU-specific optimizations are controlled with

craype-* modules, e.g. craype-mc12

Libraries

● Most computational kernels in scientific computing are
available in ready-to-run libraries
● Tested - less latent bugs

● Performance optimized

● On Cray XE/XC the following system-tuned libraries are
available
● module cray-libsci : BLAS, CBLAS, LAPACK, ScaLAPACK (dense

linear algebra), CRAFFT (FFT)

● module fftw: FFTW 2.x and 3.x

● module cray-petsc: PETSc (sparse linear algebra, PDE solvers, etc)

● module cray-trilinos: Trilinos

● module cray-tpsl: MUMPS, ParMetis, SuperLU, SuperLU_DIST,
Hypre, Scotch, and Sundials

● module cray-hdf5(-parallel): HDF5 (I/O library)

I/O optimization

● Tuning filesystem (Lustre) parameters may improve
application performance
● Lustre stripe counts & sizes, see ”man lfs”

● Rule of thumb:

● # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way and

gain performance

● #files==1 => Set stripe_count=#OSTs

Assuming you have more than 1 I/O client

● #files<#OSTs => Select stripe_count so that you use all OSTs

● Use I/O buffering for all sequential I/O
● IOBUF is a library that intercepts standard I/O (stdio) and enables

asynchronous caching and prefetching of sequential file access

● No need to modify the source code but just

● Load the module iobuf

● Rebuild your application

MPI parameters (MPICH-based MPI libraries)

● Consult man mpi for how to employ these and their proper
description

● Typically the best impact is seen from the variables
● MPICH_GNI_MAX_EAGER_MSG_SIZE

● Controls the used protocol for point-to-point message transmission

● Usually increasing the default value improves

● MPICH_NEMESIS_ASYNC_PROGRESS
● May improve sc. overlapping when using non-blocking communication

● MPICH_RANK_REORDER_METHOD
● Controls the placement of MPI tasks over the nodes

● Usually requires an optimized placement from CrayPAT suite

● MPICH_USE_DMAPP_COLL
● Controls the implementation of collective operations

● Requires the use of huge pages

PERFORMANCE ANALYSIS
Lecture 2:

Application timing

● Most basic information: total wall clock time

● Built-in timers in the program (e.g. MPI_Wtime)

● System commands (e.g. time) or batch system statistics

● Built-in timers can provide also more fine-grained
information

● Have to be inserted by hand

● Typically no information about hardware related issues

● Information about load imbalance and communication statistics of
parallel program is difficult to obtain

Performance analysis tools

● Instrumentation of code
● Adding special measurement code to binary

● Normally all routines do not need to be measured

● Measurement: running the instrumented binary
● Profile: sum of events over time

● Trace: sequence of events over time

● Analysis
● Text based analysis reports

● Visualization

Profiling

● Purpose of the profiling is to find the "hot spots" of the
program
● Usually execution time, also memory

● Usually the code has to be recompiled or relinked,
sometimes also small code changes are needed

● Often several profiling runs with different techiques is
needed
● Identify the hot spots with one approach, identify the reason for poor

performance

The application execution is interrupted at constant

intervals and the program counter and call stack is

examined

Profiling: sampling

● Pros
● Lightweight

● Does not interfere the code
execution too much

● Cons
● Not always accurate

● Difficult to catch small functions

● Results may vary between runs

Profiling: tracing

● Pros
● Can record the program

execution accurately and
repeatedly

● Cons
● More intrusive

● Can produce infeasible
large log files

● May change the
performance behavior of the
program

Hooks are added to function calls (or user-defined

points in program) and the required metric is recorded

Code optimization cycle

Instrument & run

Identify scalability
bottlenecks

Identify single-
core issues

Optimize

Validate/debug

Measure
scalability

Select
test case

Done

Step 1: Choose a test problem

● The dataset used in the analysis should
● Make sense, i.e. resemble the intended use of the code

● Be large enough for getting a good view on scalability

● Be runable in a reasonable time

● For instance, with simulation codes almost a full-blown model but run
only for a few time steps

● Should be run long enough that initialization/finalization
stages are not exaggerated
● Alternatively, we can exclude them during the analysis

1

1.2

1.4

1.6

1.8

2

64 128 256 512 1024 2048

Speedup

0

100

200

300

400

500

600

64 128 256 512 1024 2048

Walltime

Step 2: Measure scalability

● Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

● Often we look at strong
scaling
● Also weak scaling is

definitely of interest

Step 3: Instrument & run

● Obtain first a sampling profile to find which user functions
should be traced
● With a large/complex software, one should not trace them all: it

causes excessive overhead
● Tracing also e.g. MPI, I/O and library (BLAS, FFT,...) calls

● Execute and record the first analysis with
● The core count where the scalability is still ok
● The core count where the scalability has ended

 and identify the largest differences between these profiles

Example with CrayPAT (1/2)

● Load performance tools software
 module load perftools

● Re-build application (keep .o files)
 make clean && make

● Instrument application for automatic profiling analysis
 pat_build a.out
● You should get an instrumented program a.out+pat

● Run the instrumented application (...+pat) to get a
sampling profile
● You should get a performance file (“<sdatafile>.xf”) or multiple

files in a directory <sdatadir>

Example with CrayPAT (2/2)

● Generate text report and an .apa instrumentation file
 pat_report <sdatafile>.xf -o sampling.txt

● Inspect the generated .apa file and sampling report
whether additional instrumentation is needed

● Instrument application for further analysis (a.out+apa)
 pat_build –O <apafile>.apa

● Re-run the newly instrumented application (...+apa)
● Generate text report and visualization file (.ap2)

 pat_report <data.xf> -o tracing.txt
● View report in text and/or with Cray Apprentice2

 app2 <datafile>.ap2

Step 4: Identify scalability bottlenecks

● What communication pattern and routines are dominating
the true time spent for communication (excluding the sync
times)?

● How does the message-size profile look like?

● Note that the analysis tools may report load imbalances as
”real” communication
● Put an MPI_Barrier before the suspicious routine - load imbalance will

aggregate into it

Example with CrayPAT

Example with CrayPAT

.

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
...

Step 4: Identify scalability bottlenecks

● Signature: User routines scaling but MPI time blowing up
● Issue: Not enough to compute in a domain

● Weak scaling could still continue

● Issue: Expensive collectives

● Issue: Communication increasing as a function of tasks

● Signature: MPI_Sync times increasing
● Issue: Load imbalance

● Tasks not having a balanced role in communication?

● Tasks not having a balanced role in computation?

● Synchronous (single-writer) I/O or stderr I/O?

Step 5: Find single-core hotspots

● Remember: pay attention only to user routines that
consume significant portion of the total time

● Collect the key hardware counters, for example

● L1 and L2 cache metrics (PAT_RT_PERFCTR=2)

● use of vector (SSE/AVX) instructions (PAT_RT_PERFCTR=13)

● Computational intensity (= ratio of floating point ops / memory
accesses) (PAT_RT_PERFCTR=1, default)

● Trace the “math” group to see if expensive operations
(exp, log, sin, cos,...) have a significant role

USER / conj_grad_.LOOPS

 Time% 59.5%
 Time 73.010370 secs
 Imb. Time 3.563452 secs
 Imb. Time% 4.7%
 Calls 1.383 /sec 101.0 calls
 PERF_COUNT_HW_CACHE_L1D:ACCESS 183909710385
 ...
 SIMD_FP_256:PACKED_DOUBLE 1961227352
 User time (approx) 73.042 secs 189983282830 cycles 100.0% Time
 CPU_CLK 3.454GHz
 HW FP Ops / User time 969.844M/sec 70839736685 ops 9.3%peak(DP)
 Total DP ops 969.844M/sec 70839736685 ops
 Computational intensity 0.37 ops/cycle 0.33 ops/ref
 MFLOPS (aggregate) 124140.04M/sec
 TLB utilization 1058.97 refs/miss 2.068 avg uses
 D1 cache hit,miss ratios 90.0% hits 10.0% misses
 D1 cache utilization (misses) 9.98 refs/miss 1.248 avg hits
 D2 cache hit,miss ratio 17.5% hits 82.5% misses
 ...

Example with CrayPAT

Flat profile data

HW counter values

Derived
metrics

Step 5: Find single-core hotspots

● CrayPAT has mechanisms for finding “the” hotspot in one
routine (e.g. in case the routine contains several and/or
long loops)
● CrayPAT API

● Possibility to introduce “PAT regions” to capture a certain piece of a
function/subroutine

● Loop statistics (works only with Cray compiler)

● Compile & link with CCE using -h profile_generate

● pat_report will generate loop statistics if the flag is being enabled

Example with CrayPAT

.

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
 Time / | | Hit | | Avg | |
 Total | | | | | |

|---
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614
| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615
| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442
| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443
| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787
| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805
| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640
|===

Step 5: Find single-core hotspots

● Signature: Low L1 and/or L2 cache hit ratios

● <96% for L1, <99% for L1+L2

● Issue: Bad cache alignment

● Signature: Low vector instruction usage

● Issue: Non-vectorizable (hotspot) loops

● Signature: Traced ”math” group featuring a significant
portion in the profile

● Issue: Expensive math operations

The Golden Rules of profiling

● Profile your code

● The compiler/runtime will not do all the optimisation for you.

● Profile your code yourself

● Don't believe what anyone tells you. They're wrong.

● Profile on the hardware you want to run on

● Don't profile on your laptop if you plan to run on a Cray system.

● Profile your code running the full-sized problem

● The profile will almost certainly be qualitatively different for a test case.

● Keep profiling your code as you optimize

● Concentrate your efforts on the thing that slows your code down.

● This will change as you optimise.

● So keep on profiling.

Web resources

● CrayPAT documentation
http://docs.cray.com

● Scalasca
http://www.scalasca.org/

● Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

● Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau

IMPROVING NODE-LEVEL EFFICIENCY
Lecture 3:

Single-core performance analysis

● Are the hotspot routines compute-bound or memory-
bound?
● If computational intensity > 1.0 the routine is compute-bound,

otherwise memory-bound

● Signature: low L1 and/or L2 cache hit ratios
● <96% for L1, <99% for L1+L2

● Issue: Bad cache alignment

● Signature: low vector instruction usage
● Issue: Non-vectorizable (hotspot) loops

● Signature: traced ”math” group featuring a significant
portion in the profile
● Issue: Expensive operations

Doesn't the compiler do everything?

● Not yet...
● Standard answer, unchanged for the last 50 years or so

● You can make a big difference to code performance
● Helping the compiler spot optimisation opportunities
● Using the insight of your application
● Removing obscure (and obsolescent) “optimisations” in older code

● Simple code is the best, until otherwise proven

● No fixed rules: optimize on case-by-case basis
● But first, check what the compiler is already doing

Compiler feedback/output

● Cray compiler: ftn –rm … or cc/CC –hlist=m …
● Compiler generates an <source file name>.lst file that contains

annotated listing of your source code

● PGI compiler: ftn/cc -Minfo=all -Mneginfo

● Intel compiler: ftn/cc -opt-report 3 -vec-report 6

● If you want this into a file: add -opt-report-file=filename

● See ifort --help reports

● GNU compiler: ftn/cc -ftree-vectorizer-verbose=6

Issue: Bad cache alignment

● If multi-dimensional arrays are addressed in a wrong
order, it causes a lot of cache misses = bad performance
● C is row-major, Fortran column-major

● A compiler may re-order loops automatically (see output)

real a(N,M)
real sum = 0;

do i=1,N
 do j=1,M
 sum = sum + a(i,j)
 end do
end do

real a(N,M)
real sum = 0

do j=1,M
 do i=1,N
 sum = sum + a(i,j)
 end do
end do

Issue: Bad cache alignment

● Loop blocking = Large loops are partitioned by hand such
that the data in inner loops stays in caches
● A prime example is matrix-matrix multiply coding

● Complicated optimization: optimal block size is a machine
dependent factor as there is a strong connection to L1 and
L2 cache sizes

● Some compilers do loop blocking automatically
● See the compiler output

● You can assist it using compiler pragmas/directives

Cache Use in Stencil Computations

● 2D Laplacian

do j = 1, 8

 do i = 1, 16

 a = u(i-1,j) + u(i+1,j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

end do

● Cache structure for this example:

● Each line holds 4 array elements
● Cache can hold 12 lines of u data

● No cache reuse between outer loop
iterations

3 4 6 7 9 10 12 13 15 18 30 120

i=1

i=16

j
=
1

j
=
8

Blocking to Increase Reuse

● Unblocked loop: 120 cache misses

● Block the inner loop

do IBLOCK = 1, 16, 4

 do j = 1, 8

 do i = IBLOCK, IBLOCK + 3

 a(i,j) = u(i-1,j) + u(i+1,j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

 end do

end do

● Now we have reuse of the “j+1”
data

3 4 6 7 8 9 10 11 12 20 80

i=1

i=13

j
=
1

j
=
8

i=5

i=9

Blocking to Increase Reuse

● One-dimensional blocking reduced
misses from 120 to 80

● Iterate over 4×4 blocks

do JBLOCK = 1, 8, 4

 do IBLOCK = 1, 16, 4

 do j = JBLOCK, JBLOCK + 3

 do i = IBLOCK, IBLOCK + 3

 a(i,j) = u(i-1,j) + u(i+1,j) &

 - 4*u(i,j) &

 + u(i,j-1) + u(i,j+1)

 end do

 end do

 end do

end do

● Better use of spatial locality (cache
lines) 3 4 6 7 8 9 10 11 12 13 15 16 17 18 30 60

i=1

i=13

j
=
1

j
=
5

i=5

i=9

Issue: Bad cache alignment

Original loopnest Blocking with compiler
directives

Equivalent explicit code

do k = 6, nz-5
 do j = 6, ny-5
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
enddo

!dir$ blockable(j,k)
!dir$ blockingsize(16)
do k = 6, nz-5
 do j = 6, ny-5
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
enddo

do kb = 6,nz-5,16
 do jb = 6,ny-5,16
 do k = kb,MIN(kb+16-
1,nz-5)
 do j =
jb,MIN(jb+16-1,ny-5)
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
 enddo
 enddo
enddo

C:
#pragma blockable(2)
#pragma blockingsize(16)

Loop depth

Issue: Bad cache alignment

● Loop fusion: Useful when the same data is used e.g. in
two separate loops: cache-line re-use

Original code Complete fusion Partial fusing

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

Issue: Non-vectorizable loops

● See compiler feedback on why some loops were not
vectorized
● CCE: -hlist=a

● Intel: -vec-report[0..5]
● GNU: -ftree-vectorizer-verbose=5

16. + 1-------< do j = 1,N
17. 1 x = xinit
18. + 1 r4----< do i = 1,N
19. 1 r4 x = x + vexpr(i,j)
20. 1 r4 y(i) = y(i) + x
21. 1 r4----> end do
22. 1-------> end do ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

 A loop starting at line 16 was not vectorized

because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

 A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

 A loop starting at line 18 was not vectorized

because a recurrence was found on "x" at line 19.

Issue: Non-vectorizable loops

● The compiler will only vectorize loops

● Constant (unit) strides are best

● Indirect addressing will not vectorize (efficiently)

● Can vectorize across inlined functions but not if a
procedure call is not inlined

● Needs to know loop tripcount (but only at runtime)
● i.e. DO WHILE style loops will not vectorize

● No recursion allowed

Issue: Non-vectorizable loops

● Does the non-vectorized loop have true dependencies?

● No: add the pragma/directive ivdep on top of the loop

● Yes: Rewrite the loop

● Convert loop scalars to vectors

● Move if-statements out of the loop

● If you cannot vectorize the entire loop, consider splitting it
- so as much of the loop is vectorized as possible

Issue: Non-vectorized loops

38. Vf------< do i = 1,N

39. Vf x(i) = xinit

40. Vf------> end do

41.

42. ir4-----< do j = 1,N

43. ir4 if--< do i = 1,N

44. ir4 if x(i) = x(i) + vexpr(i,j)

45. ir4 if y(i) = y(i) + x(i)

46. ir4 if--> end do

47. ir4-----> end do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was interchanged with the loop starting at

line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

 A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

 A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

 A loop starting at line 42 was vectorized as part of the loop starting at

line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

 A loop starting at line 42 was unrolled 4 times.

-37%

x promoted to vector: trade
slightly more memory for better
performance

Issue: Expensive operations

● Cost of different scalar FP operations is roughly as
follows:

 ~1 cycle: +, *

 ~20 cycles: /, sqrt()

 ~100-300 cycles: sin, cos, exp, log, ...

● Note that there is also instruction latency and issues
related to the pipelining

Issue: Expensive operations

● Loop hoisting: try to get the expensive operations out
of innermost loops

● Minimize the use of sin, cos, exp, log, pow, ...

● Consider precomputing values to lookup table

● Use identities, e.g.

● pow(x,2.5) = x*x*sqrt(x)

● sin(x)*cos(x) = 0.5*sin(2*x)

IMPROVING PARALLEL SCALABILITY
Lecture 4:

Scalability bottlenecks

● Signature: user routines scaling but MPI time blowing up

● Issue: Not enough to compute in a domain

● Weak scaling could still continue

● Issue: Expensive (all-to-all) collectives

● Issue: Communication increasing as a function of tasks

● Signature: MPI_Sync times increasing

● Issue: Load imbalance

● Tasks not having a balanced role in communication?

● Tasks not having a balanced role in computation?

● Synchronous (single-writer) I/O or stderr I/O?

Issue: Load imbalances

● Identify the cause

● How to fix I/O related imbalance will be addressed later

● Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

● Dynamic load balancing schemas

● MPMD style programming

● There may be still something we can try without code re-design

Issue: Load imbalances

● Consider hybridization (mixing OpenMP with MPI)

● Reduces the number of MPI tasks - less pressure for load balance

● May be doable with very little effort

● Just plug omp parallel do’s/for’s to the most intensive loops

● However, in many cases large portions of the code has to be
hybridized to outperform flat MPI

Issue: Load imbalances

● Changing rank placement

● So easy to experiment with that it should be tested with every
application!

● CrayPAT is able to make suggestions for optimal rank placement:
pat_report -O mpi_rank_order datafile.xf

● This output can then be copied or written into a file named
MPICH_RANK_ORDER and used with
MPICH_RANK_REORDER_METHOD=3

Issue: Point-to-point communication
consuming time

● Bandwidth and latency depend on the used protocol

● Eager or rendezvous

● Latency and bandwidth higher in rendezvous

● Rendezvous messages usually do not allow for overlap of computation
and communication, even when using non-blocking communication
routines

● The platform will select the protocol basing on the message size,
these limits can be adjusted

● See the CrayPAT report for the message size profile, which
is the dominant protocol

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty

buffer(s) on the remote

processor.

Data is copied from the buffer

into the real receive

destination when the wait or

waitall is called.

Involves an extra memcopy,

but much greater opportunity

for overlap of computation

and communication.

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer

is often only occurs during the

Wait or Waitall statement.

When the message arrives at

the destination, the host CPU

is busy doing computation, so

is unable to do any message

matching.

Control only returns to the

library when MPI_Waitall

occurs and does not return

until all data is transferred.

There has been no overlap of

computation and

communication.

DATA DATA

DATA DATA

Issue: Point-to-point communication
consuming time

● One way to improve performance is to send more
messages using the eager protocol

● This can be done by raising the value of the eager threshold, by
setting environment variable:
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

● Values are in bytes, the default is 8192 bytes. Maximum size is
131072 bytes (128KB)

● Have MPI_Irecv calls open before the corresponding
MPI_Isend calls to avoid unnecessary buffer copies and
buffer overflows

Issue: Point-to-point communication
consuming time

● On Cray XE & XC: Asynchronous Progress Engine

● Progresses rendezvous messages on the background by
launching an extra helper thread to each MPI task
● This will need spare cores or hyperthreads

● Works only when running without hyperthreading
(aprun -j1)

● or with using specialized cores (aprun -r1)

● Consult ‘man mpi’ and there the variable
MPICH_NEMESIS_ASYNC_PROGRESS

Issue: Expensive collectives

● Reducing MPI tasks by hybridizing with OpenMP often
helps

● See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)
● May be faster even if some tasks would be receiving data not

referenced later

● In case of (very) sparse Alltoallv’s, point-to-point
communication may outperform the collective

Issue: Expensive collectives

● Use non-blocking collectives (MPI_Ialltoall,...)
● Allow for overlapping collectives with other operations, e.g.

computation, I/O or other
communication

● Are in most cases faster
than the blocking
corresponds even without
the overlap

● Replacement is trivial

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

8 16 32 64 128 256 512 1024 2048 4096

P
ro

p
o

rt
io

n
al

 g
ai

n
 f

ro
m

 o
ve

rl
ap

 [%
]

Message size [B]

MPI_Ialltoall, 1024 cores Cray XC30

Issue: Expensive collectives

● Hand-written RDMA collectives may outperform those of
the MPI library
● Fortran coarrays, Unified Parallel C, MPI one-sided communication

M
an

n
in

en
, C

R
ES

TA
 D

4.
5.

3
(2

01
3)

Issue: Expensive collectives

● On Cray XC, the sc. DMAPP implementation of collectives
will (usually significantly) improve the performance of the
expensive collectives
● Enabled by the variable MPICH_USE_DMAPP_COLL

● Consult ’man mpi’

0

200

400

600

800

1000

1200

1400

1600

8 32 256 1024 8192

Th
ro

u
gh

p
u

t
ti

m
e

[µ
s]

Message size [B]

MPI_Allreduce, no
DMAPP

MPI_Allreduce, DMAPP

8192 cores

>3x

Issue: Performance bottlenecks due to I/O

● Parallelize your I/O !

● MPI I/O, I/O libraries (HDF5, NetCDF), hand-written schemas,...

● Without parallelization, I/O will be a scalability bottleneck in every
application

● Try to hide I/O (asynchronous I/O)

● Available on MPI I/O (MPI_File_iwrite/read(_at))

● One can also add dedicated ”I/O servers” into code: separate MPI
tasks or dedicating one I/O core per node on a hybrid MPI+OpenMP
application

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Issue: Performance bottlenecks due to I/O

● Tune filesystem (Lustre) parameters
● Lustre stripe counts & sizes, see ”man lfs”

● Rule of thumb:

● # files > # OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this way and
gain performance

● #files==1 => Set stripe_count=#OSTs
Assuming you have more than 1 I/O client

● #files<#OSTs => Select stripe_count so that you use all OSTs

Case study: Single-writer I/O

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

1 MB Stripe

32 MB Stripe

Case study: Parallel I/O into a single file

● A particular code both reads and writes a 377 GB file,
runs on 6000 cores
● Total I/O volume (reads and writes) is 850 GB

● Utilizes parallel HDF5 I/O library

● Default stripe settings: count =4, size=1M
● 1800 s run time (~ 30 minutes)

● New stripe settings: count=-1, size=1M
● 625 s run time (~ 10 minutes)

Issue: Performance bottlenecks due to I/O

● Use I/O buffering for all sequential I/O
● On Cray: IOBUF is a library that intercepts standard I/O (stdio) and

enables asynchronous caching and prefetching of sequential file
access

● No need to modify the source code but just
● Load the module iobuf

● Rebuild your application

● Insert ”export IOBUF_PARAMS=’*’” to your job script

● These params control e.g. which files are being buffered, how many
bufferes are used etc.

● See man iobuf

Issue: Performance bottlenecks due to I/O

● When using MPI and making non-contiguous writes/reads
(e.g. multi-dimensional arrays), always define file views
with suitable user-defined types and use collective I/O

● Performance can be 100x compared to individual I/O

Performance Engineering:
Concluding remarks

● Scaling up is the most important consideration in HPC

● Possible approaches for alleviating typical scalability
bottlenecks

● Find the optimal rank placement

● Use non-blocking communication operations for both p2p and
collective communication

● Make more messages ’eager’ and/or employ the Asynchronous
Progress Engine (on Cray)

● Hybridize (=mix MPI+OpenMP) the code to improve load balance and
alleviate bottleneck collectives

Performance Engineering:
Concluding remarks

● Mind your I/O!

● Use parallel I/O

● Tune filesystem parameters

● Node-level performance considerations

● Good data locality and cache optimization crucial for performance,
together with vectorization

● Usually an interplay with the compiler - see the compiler feedback and
restructure loops to allow for compiler optimization

Introduction to the lab session

● We will analyse and optimize applications throughout the
afternoon - more detailed instructions provided as
handouts.

● You are encouraged to work with your own application! In
case you don’t have one there’s a toy code for 2D heat
equation solver being provided.

● The lab is quite inexact - discuss with the instructors
about different strategies good for your code.

