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Performance engineering

We want to get the most science

: ) 4 3
and engineering through a NI
supercomputing system as N Epllq 9
possible. ® ¥~ 104

The more efficient codes are, the
more productive scientists and
engineers can be.




: CRANY
Performance analysis \

To optimize code we must know what is taking the time \

Profile Data

Top time consuming routines
Load balance across processes and
threads

Parallel overhead
Communication patterns
Hardware utilization details




Performance engineering — overview ='=AY.\
Wednesday :
9 15-9 45 Int_roduction t,c,) pe_rformancie e,l:lgineering &
briefly about ”optimal porting
10.00-10.15 Coffee break
10.15-11.00 Application performance analysis
11.00-11.15 Break
11.15-12.00 Improving node-level efficiency
12.00-13.00 Lunch break
13.00-13.45 Improving parallel scalability
13.45-14.00 Break
14.00-17.00 Hands-on session: application profiling &

optimization (coffee being served at 15:00)

+ A wrap-up & lab session review on Friday morning at 8:30



Lecture 1:

INTRODUCTION TO PERFORMANCE
ENGINEERING



Code optimization

e Obvious benefits
e Better throughput => more science
e Cheaper than new hardware
e Save energy, compute quota etc.
e ..and some non-obvious ones
e Collaboration opportunities

e Potential for cross-disciplinary research
e Deeper understanding of application
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e Several trends making code optimization even more \
Important

e More and more cores

e CPU’s vector units getting wider

e The gap between CPU and memory speed ever increasing

e Datasets growing rapidly but disk 1/O performance lags behind



Code optimization R

e Adapting the problem to the underlying hardware \
e Combination of many aspects

e Effective algorithms
e Implementation: Processor utilization & efficient memory use
e Parallel scalability

e Important to understand interactions

e Algorithm — code — compiler — libraries — hardware

e Performance is not portable!
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Why does scaling end?
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Why does scaling end?

\

e Amount of data per process small - computation takes
little time compared to communication

e Amdahl’s law in general
e E.g., single-writer or stderr I/O

e Load imbalance

e Communication that scales badly with N,
e E.g., all-to-all collectives

e Congestion of network —too many messages or lots of
data

\

\
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Not going to touch the source code?

e Find the compiler and its compiler flags that yield the
best performance

e Employ tuned libraries wherever possible
e Find suitable settings for environment parameters

e Mind the I/O

e Do not checkpoint too often
e Do not ask for the output you do not need



® e
CRANY”
A

® \
\

Compiler man pages (on Cray)

e The cc, CC, and ftn man pages contain information
about the compiler driver commands

e Cray compiler: man craycc, crayCC, and crayftn

e GNU compiler: man gcc, g++, and gfortran

e PGl compiler: man pgf90, man pgcc, man pgCC

e Intel: no man page available, but do ifort/icc -help

e To verify that you are using the correct version of a
compiler, use:
e -V option on a cc, CC, or ftn command with CCE
e --version option on a cc, CC, or ftn command with GNU



e
CRANY
)

° \
\

|

Recommended compiler optimization flags

PGI -fast -fast -O3 -Mipa=fast,inline

Cray (default level) -O3 -hfp3

Intel -O3 -Ofast -ipa -unroll-
aggressive -align -fp-
model fast=2

GNU -03 -Ofast -funroll-all-loops

On Cray systems, the CPU-specific optimizations are controlled with
craype-* modules, e.g. craype-mcl12
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Libraries

e Most computational kernels in scientific computing are \
available in ready-to-run libraries
e Tested - less latent bugs
e Performance optimized

e On Cray XE/XC the following system-tuned libraries are
available

e module cray-libsci : BLAS, CBLAS, LAPACK, ScalLAPACK (dense
linear algebra), CRAFFT (FFT)

module fftw: FFTW 2.x and 3.x
module cray-petsc: PETSc (sparse linear algebra, PDE solvers, etc)
module cray-trilinos: Trilinos

module cray-tpsl: MUMPS, ParMetis, SuperLU, SuperLU_DIST,
Hypre, Scotch, and Sundials

e module cray-hdf5(-parallel): HDF5 (I/O library)
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/O optimization

e Tuning filesystem (Lustre) parameters may improve
application performance
e Lustre stripe counts & sizes, see "man Ifs”
e Rule of thumb:

o #files># OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this way and
gain performance

o #files==1 => Set stripe_count=#0STs
Assuming you have more than 1 I/O client

o #files<#OSTs => Select stripe_count so that you use all OSTs

e Use I/O buffering for all sequential 1/0O

e IOBUF is a library that intercepts standard I/O (stdio) and enables
asynchronous caching and prefetching of sequential file access

e No need to modify the source code but just
e Load the module iobuf
e Rebuild your application
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MPI parameters (MPICH-based MPI libraries)

e Consult man mpi for how to employ these and their proper
description

e Typically the best impact is seen from the variables
e MPICH GNI MAX EAGER _MSG_ SIZE
e Controls the used protocol for point-to-point message transmission
e Usually increasing the default value improves
e MPICH NEMESIS ASYNC PROGRESS
e May improve sc. overlapping when using non-blocking communication
e MPICH RANK REORDER METHOD
e Controls the placement of MPI tasks over the nodes
e Usually requires an optimized placement from CrayPAT suite
e MPICH USE DMAPP_COLL
e Controls the implementation of collective operations
e Requires the use of huge pages



Lecture 2:

PERFORMANCE ANALYSIS



Application timing

e Most basic information: total wall clock time \
e Built-in timers in the program (e.g. MPl_Wtime)
e System commands (e.g. time) or batch system statistics

e Built-in timers can provide also more fine-grained
Information
e Have to be inserted by hand
e Typically no information about hardware related issues

e Information about load imbalance and communication statistics of
parallel program is difficult to obtain



Performance analysis tools

e Instrumentation of code
e Adding special measurement code to binary
e Normally all routines do not need to be measured
e Measurement: running the instrumented binary
e Profile: sum of events over time
e Trace: sequence of events over time
e Analysis
e Text based analysis reports
e Visualization
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Profiling

e Purpose of the profiling is to find the "hot spots" of the \
program
e Usually execution time, also memory

e Usually the code has to be recompiled or relinked,
sometimes also small code changes are needed

e Often several profiling runs with different techiques is
needed

e Identify the hot spots with one approach, identify the reason for poor
performance



Profiling: sampling

The application execution is interrupted at constant
Intervals and the program counter and call stack is
examined

e Pros e Cons
e Lightweight e Not always accurate
e Does not interfere the code ¢ Difficult to catch small functions

execution too much e Results may vary between runs



Profiling: tracing

Hooks are added to function calls (or user-defined
points in program) and the required metric is recorded

e Pros e Cons
e Can record the program e More intrusive
execution accurately and

e Can produce infeasible
large log files

e May change the
performance behavior of the
program

repeatedly



Code optimization cycle

Select

test case | v
y | Instrument & run

Measure Identify scalability
scalability bottlenecks

Identify single-
coreissues

Validate/debug

Optimize




Step 1. Choose atest problem

e The dataset used in the analysis should \
Make sense, i.e. resemble the intended use of the code
Be large enough for getting a good view on scalability
Be runable in a reasonable time
For instance, with simulation codes almost a full-blown model but run
only for a few time steps
e Should be run long enough that initialization/finalization
stages are not exaggerated
e Alternatively, we can exclude them during the analysis



Step 2: Measure scalability

e Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

e Often we look at strong
scaling

e Also weak scaling is
definitely of interest
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Step 3: Instrument & run

e Obtain first a sampling profile to find which user functions

should be traced
e With a large/complex software, one should not trace them all: it
causes excessive overhead
e Tracing also e.g. MPI, I/O and library (BLAS, FFT,...) calls
e Execute and record the first analysis with
e The core count where the scalability is still ok
e The core count where the scalability has ended

and identify the largest differences between these profiles



Example with CrayPAT (1/2)

e Load performance tools software
module load perftools
e Re-build application (keep .o files)
make clean && make
e Instrument application for automatic profiling analysis
pat_build a.out
e You should get an instrumented program a.out+pat
e Run theinstrumented application (...+pat) to get a
sampling profile

e You should get a performance file (“<sdatafile>.xf”) or multiple
files in a directory <sdatadir>
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Example with CrayPAT (2/2)

e Generatetextreport and an .apa instrumentation file
pat_report <sdatafile>.xf -o sampling.txt

e Inspectthe generated .apa file and sampling report
whether additional instrumentation is needed

e Instrument application for further analysis (a.out+apa)
pat _build -0 <apafile>.apa
e Re-runthe newly instrumented application (...+apa)

e Generate text report and visualization file (.ap2)
pat_report <data.xf> -o tracing.txt

e View reportin text and/or with Cray Apprentice2
app2 <datafile>.ap2



® e
CRANY”
A

® \
\

Step 4: Identify scalability bottlenecks

e What communication pattern and routines are dominating
the true time spent for communication (excluding the sync
times)?

e How does the message-size profile look like?

e Note that the analysis tools may report load imbalances as
”’real” communication

e Put an MPI_Barrier before the suspicious routine - load imbalance will
aggregate into it



Example with CrayPAT
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Example with CrayPAT SR TS

Table 4: MPI Message Stats by Caller

MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
Bytes | Count | <16B | MsgSz | Caller
| | Count | <64KB | PE[mmm]
| | | Count |

15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

I I I | MAIN_
|| p=memeeeszczcacamsass5s0sssscz0000005m 2200002
|| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.©
|| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
|| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
|l
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Step 4: Identify scalability bottlenecks

e Signature: User routines scaling but MPI time blowingup
e Issue: Not enough to compute in a domain
e Weak scaling could still continue
e Issue: Expensive collectives
e Issue: Communication increasing as a function of tasks

e Signature: MPIl_Sync times increasing

e Issue: Load imbalance
e Tasks not having a balanced role in communication?
e Tasks not having a balanced role in computation?
e Synchronous (single-writer) I/O or stderr 1/O?



® e
c=RAY
.

S \
\

Step 5: Find single-core hotspots

e Remember: pay attention only to user routines that \
consume significant portion of the total time

e Collect the key hardware counters, for example

e L1 and L2 cache metrics (PAT_RT_PERFCTR=2)
e use of vector (SSE/AVX) instructions (PAT_RT_PERFCTR=13)

e Computational intensity (= ratio of floating point ops / memory
accesses) (PAT_RT_PERFCTR=1, default)

e Trace the “math” group to see if expensive operations
(exp, log, sin, cos,...) have a significant role



Example with CrayPAT

USER / conj_grad_.LOOPS

Time% 59.5%

Time 73.010370 secs 7

Imb. Time 3.563452 secs Flat profile dat;
Imb. Time% 4.7%

Calls 1.383 /sec 101.0 calls
PERF_COUNT_HW_CACHE_L1D:ACCESS 183909710385 HW counter valud
SIMD_FP_256:PACKED_DOUBLE 1961227352

User time (approx) 73.042 secs 189983282830 cycles 100.0% Time
CPU_CLK 3.454GHz -\\)

HW FP Ops / User time 969.844M/sec 70839736685 ops 9.3%peak(DP)

Total DP ops 969.844M/sec 70839736685 ops

Computational intensity 0.37 ops/cycle 0.33 ops/ref

MFLOPS (aggregate) 124140.04M/sec Deriv
TLB utilization 1058.97 refs/miss 2.068 avg uses metri
D1 cache hit,miss ratios 90.0% hits 10.0% misses

D1 cache utilization (misses) 9.98 refs/miss 1.248 avg hits

D2 cache hit,miss ratio 17.5% hits 82.5% misses

L\

4
o

CS
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Step 5: Find single-core hotspots

e CrayPAT has mechanisms for finding “the” hotspot in one
routine (e.g. in case the routine contains several and/or
long loops)
o CrayPAT API

e Possibility to introduce “PAT regions” to capture a certain piece of a
function/subroutine

e Loop statistics (works only with Cray compiler)
e Compile & link with CCE using -h profile _generate
e pat_report will generate loop statistics if the flag is being enabled



Example with CrayPAT SR TS

Table 2: Loop Stats from -hprofile_generate
Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
Time / | | Hit | | Avg | |
Total | | | | | |
| _________________________________________________________________________
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2 .LOOP.09.li.614
| 24.0% | ©.055725 | 0.000009 | 6413 | 512.0 | vector |calc2 .LOOP.1.1i.615
| 18.9% | ©.043875 | ©0.000439 | 100 | 64.1 | novec |calcl .LOOP.0.1i.442
| 18.3% | ©.042549 | 0.000007 | 6413 | 512.0 | vector |calcl .LOOP.1.1i.443
| 17.1% | 0.039822 | ©.000406 | 98 | 64.1 | novec |calc3 .LOOP.@.1i.787
| 16.7% | ©.038883 | ©.000006 | 6284 | 512.0 | vector |calc3 .LOOP.1.1i.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3 .LOOP.2.1i.8@5
| 4.2% | 0.009837 | ©.000098 | 100 | 512.0 | vector |calc2_ .LOOP.2.1i.640




Step 5: Find single-core hotspots

e Signature: Low L1 and/or L2 cache hit ratios
e <96% for L1, <99% for L1+L2
e Issue: Bad cache alignment

e Signature: Low vector instruction usage
e Issue: Non-vectorizable (hotspot) loops

e Signature: Traced "math” group featuring a significant
portion in the profile

e Issue: Expensive math operations



The of profiling

e Profile your code \

e The compiler/runtime will not do all the optimisation for you.

e Profile your code yourself

e Don't believe what anyone tells you. They're wrong.

e Profile on the hardware you want to run on

e Don't profile on your laptop if you plan to run on a Cray system.

e Profile your code running the full-sized problem

e The profile will almost certainly be qualitatively different for a test case.

e Keep profiling your code as you optimize
e Concentrate your efforts on the thing that slows your code down.
e This will change as you optimise.
e So keep on profiling.



Web resources

e CrayPAT documentation
http://docs.cray.com

e Scalasca
http://www.scalasca.org/

e Paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

e Tau performance analysis utility
http://www.cs.uoregon.edu/Research/tau



Lecture 3:

IMPROVING NODE-LEVEL EFFICIENCY
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Single-core performance analysis

e Are the hotspot routines compute-bound or memory- \
bound?

e |f computational intensity > 1.0 the routine is compute-bound,
otherwise memory-bound

e Signature: low L1 and/or L2 cache hit ratios
o <96% for L1, <99% for L1+L2
e Issue: Bad cache alignment
e Signature: low vector instruction usage
e Issue: Non-vectorizable (hotspot) loops
e Signature: traced "math” group featuring a significant
portion in the profile
e Issue: Expensive operations



Doesn't the compiler do everything?

e Not yet... \
e Standard answer, unchanged for the last 50 years or so

e You can make a big difference to code performance
e Helping the compiler spot optimisation opportunities
e Using the insight of your application
e Removing obscure (and obsolescent) “optimisations” in older code
e Simple code is the best, until otherwise proven
e No fixed rules: optimize on case-by-case basis
e But first, check what the compiler is already doing



Compiler feedback/output

e Cray compiler: ftn -rm ... or c¢c/CC -hlist=m ...

e Compiler generates an <source file name>.Ist file that contains
annotated listing of your source code

e PGl compiler: ftn/cc -Minfo=all -Mneginfo

e Intel compiler: ftn/cc -opt-report 3 -vec-report 6
e If you want this into a file: add -opt-report-file=filename
e See ifort --help reports

e GNU compiler: ftn/cc -ftree-vectorizer-verbose=6



Issue: Bad cache alignment

CRANY
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e If multi-dimensional arrays are addressed in awrong

order, it causes a lot of cache misses = bad performance
e C is row-major, Fortran column-major

e A compiler may re-order loops automatically (see output)

real a(N,M)
real sum = 0O;

do i=1,N
do j=1,M
sum = sum + a(i,j)
end do
end do

N

real a(N,M)
real sum = 0

do j=1,M
do i=1,N
sum = sum + a(i,j)
end do
end do

°

\

\
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Issue: Bad cache alignment

e Loop blocking = Large loops are partitioned by hand such
that the data in inner loops stays in caches
e A prime example is matrix-matrix multiply coding

e Complicated optimization: optimal block size Is a machine
dependent factor as there is a strong connection to L1 and
L2 cache sizes

e Some compilers do loop blocking automatically
e See the compiler output
e You can assist it using compiler pragmas/directives



Cache Use in Stencil Computations cRay

e 2D Laplacian

do j=1, 8
doi=1, 16
a =u(i-1,3) + u(i+l,j) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)

end do
end do

e Cache structure for this example:
e Each line holds 4 array elements
e Cache can hold 12 lines of u data

e No cache reuse between outer loop
iterations




Blocking to Increase Reuse cRas
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e Unblocked loop: 120 cache misses
e Block the inner loop ‘

do IBLOCK = 1, 16, 4

do j =1, 8
do i = IBLOCK, IBLOCK + 3
a(i,j) = u(i-1,3j) + u(i+l,j) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do
end do

e Now we have reuse of the “j+1”
data
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e One-dimensional blocking reduced
misses from 120 to 80 \

e lterate over 4%x4 blocks

do JBLOCK = 1, 8, 4
do IBLOCK = 1, 16, 4
do j = JBLOCK, JBLOCK + 3
do i = IBLOCK, IBLOCK + 3

a(i,j) = u(i-1,j) + u(i+l,j) &
- 4*u(i,]) &
+ u(i,j-1) + u(i,j+1)
end do
end do
end do
end do

e Better use of spatial locality (cache
lines)
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Original loopnest Blocking with compiler Equivalent explicit code |
directives

Issue: Bad cache alignment

ldir$ blockable(j,k) do kb = 6,nz-5,16
ldir$ blockingsize(16) do jb = 6,ny-5,16
do k = 6, nz-5 do k = 6, nz-5 do k = kb,MIN(kb+16-
do j = 6, ny-5 do j = 6, ny-5 1,nz-5)
do i = 6, nx-5 do i = 6, nx-5 do j =
I stencil I stencil jb,MIN(jb+16-1,ny-5)
enddo enddo do i = 6, nx-5
enddo enddo I stencil
enddo enddo enddo
enddo
enddo
= eng@e depth

#pragma blockable(2) /“é’ﬁddo
#pragma blockingsize(16)
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Issue: Bad cache alignment

e Loop fusion: Useful when the same data is used e.g. In
two separate loops: cache-linere-use

Original code Complete fusion Partial fusing

do j = 1, Nj do j = 1, Nj do j = 1, Nj
do i = 1, Ni do i =1, Ni do i = 1, Ni
a(i,j)=b(i,j)*2 a(i,j)=b(i,j)*2 a(i,j)=b(i,j)*2
enddo a(i,j)=a(i,j)+1 enddo
enddo enddo do i =1, Ni
enddo a(i,j)=a(i,j)+1
do j = 1, Nj enddo
do i =1, Ni enddo
a(i,j)=a(i,j)+1
enddo

enddo



Issue: Non-vectorizable loops
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e See compiler feedback on why some loops were not
vectorized

16.
17.
18.
19.

21.
22.

e CCE:

-hlist=a
e Intel: -vec-report[0..5]

e GNU: -ftree-vectorizer-verbose=5

------- <
r4----<
r4
r4
r4d---->

------- >

do j = 1,N
X = Xinit
do i =1,N

X =

X + vexpr(i,j)

y(i) = y(i) + x

end do
end do

\

\

ftn-6254 ftn: VECTOR
A loop starting at
because a recurrence
ftn-6005 ftn: SCALAR
A loop starting at
ftn-6254 ftn: VECTOR
A loop starting at
because a recurrence

File = bufpack.F90, Line = 16
line 16 was not vectorized
was found on "y" at line 20.
File = bufpack.F90, Line = 18
line 18 was unrolled 4 times.
File = bufpack.F90, Line = 18
line 18 was not vectorized
was found on "x" at line 19.




Issue: Non-vectorizable loops

e The compiler will only vectorize loops
e Constant (unit) strides are best
e Indirect addressing will not vectorize (efficiently)

e Can vectorize across inlined functions but not if a
procedure call is not inlined

e Needs to know loop tripcount (but only at runtime)
e i.e. DO WHILE style loops will not vectorize

e No recursion allowed



Issue: Non-vectorizable loops
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e Does the non-vectorized loop have true dependencies?
e No: add the pragma/directive ivdep on top of the loop
e Yes: Rewrite the loop

e Convert loop scalars to vectors

e Move if-statements out of the loop

e If you cannot vectorize the entire loop, consider splitting it
- so as much of the loop is vectorized as possible

(e — PO
%

\



Issue: Non-vectorized loops

38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

do i=1,N
x(i) = xinit
end do

x(i; = x(i) + vexpr(i,j)
y(i) = y(i) + x(i)
end do
end do
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x promoted to vector: trade
slightly more memory for better
performance

ftn-6007 ftn: SCALAR File = bufpack.F90, Line =42

A loop starting at line 42 was interchanged with the loop starting at
line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line =43

A loop starting at line 43 was fused with the loop starting at line 38.
ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

A loop starting at line 38 was vectorized.
ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

A loop starting at line 42 was vectorized as part of the loop starting at
line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was unrolled 4 times.
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Issue: Expensive operations

\

e Cost of different scalar FP operations is roughly as
follows:

~1 cycle: +,*
~20 cycles: /, sqrt()
~100-300 cycles: sin, cos, exp, log, ...

e Note that there is also instruction latency and issues
related to the pipelining

\

\



® e
(e — POV
.

S \
\

Issue: Expensive operations

e Loop hoisting: try to get the expensive operations out ‘
of innermost loops
e Minimize the use of sin, cos, exp, log, pow, ...
e Consider precomputing values to lookup table
e Use identities, e.q.
e pow(x,2.5) = x*x*sqrt(x)
e sin(x)*cos(x) = 0.5*sin(2*x)



Lecture 4:

IMPROVING PARALLEL SCALABILITY
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Scalability bottlenecks

e Signature: user routines scaling but MPI time blowingup |
e Issue: Not enough to compute in a domain
e Weak scaling could still continue
e Issue: Expensive (all-to-all) collectives

e Issue: Communication increasing as a function of tasks

e Signature: MPIl_Sync times increasing
e Issue: Load imbalance
e Tasks not having a balanced role in communication?
e Tasks not having a balanced role in computation?

e Synchronous (single-writer) I/O or stderr 1/O?



Issue: Load imbalances

e |dentify the cause \

e How to fix I/O related imbalance will be addressed later

e Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

e Dynamic load balancing schemas
e MPMD style programming
e There may be still something we can try without code re-design
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Issue: Load imbalances

e Consider hybridization (mixing OpenMP with MPI) .
e Reduces the number of MPI tasks - less pressure for load balance
e May be doable with very little effort

e Just plug omp parallel do’s/for’s to the most intensive loops

e However, in many cases large portions of the code has to be
hybridized to outperform flat MPI



Issue: Load imbalances

e Changing rank placement y

e S0 easy to experiment with that it should be tested with every
application!

e CrayPAT is able to make suggestions for optimal rank placement:
pat report -0 mpi_rank order datafile.xf

e This output can then be copied or written into a file named
MPICH_RANK_ORDER and used with
MPICH RANK_ REORDER METHOD=3
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e Bandwidth and latency depend on the used protocol \

e Eager or rendezvous
e Latency and bandwidth higher in rendezvous

e Rendezvous messages usually do not allow for overlap of computation
and communication, even when using non-blocking communication

routines

e The platform will select the protocol basing on the message size,
these limits can be adjusted

e See the CrayPAT report for the message size profile, which
IS the dominant protocol



EAGER potentially allows overlapping S
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Rank A Rank B Data is pushed into an empty
buffer(s) on the remote
Compute Compute processor.
Data is copied from the buffer
MPI_IRecv MPI_IRecv into the real receive

MPI_ISend . MPI_ISend destination when the wait or
* ‘ waitall is called.

Involves an extra memcopy,
but much greater opportunity
Compute Compute for overlap of computation
and communication.

Time

Compute Compute




RENDEZVOUS does not usually overlap S
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Rank A Rank B With rendezvous data transfer
Compute Compute Is often only occurs during the

_ _ Wait or Waitall statement.

When the message arrives at

MP1_IRecv MPI_IRecv the destination, the host CPU
MPI_ISend ~__ MPI_ISend is busy doing computation, so
K>< IS unable to do any message
matching.

Time

Control only returns to the
Compute Compute library when MPI_Waitall

occurs and does not return
until all data is transferred.

There has been no overlap of
computation and
communication.
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e One way to improve performance is to send more
messages using the eager protocol

e This can be done by raising the value of the eager threshold, by
setting environment variable:

export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

e Values are in bytes, the default is 8192 bytes. Maximum size is
131072 bytes (128KB)

e Have MPI _lIrecv calls open before the corresponding

MPI_Isend calls to avoid unnecessary buffer copies and
buffer overflows



Issue: Point-to-point communication cRay
consuming time S
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e On Cray XE & XC: Asynchronous Progress Engine

e Progresses rendezvous messages on the background by
launching an extra helper thread to each MPI task
e This will need spare cores or hyperthreads
e Works only when running without hyperthreading
(aprun -j1)
e Or with using specialized cores (aprun -rl)
e Consult ‘man mpi’ and there the variable
MPICH_NEMESIS_ ASYNC_PROGRESS
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Issue: Expensive collectives

e Reducing MPI tasks by hybridizing with OpenMP often \
helps

e See if you can live with the basic version of a routine
Instead of a vector version (MPI_Alltoallv etc)

e May be faster even if some tasks would be receiving data not
referenced later

e In case of (very) sparse Alltoallv’s, point-to-point
communication may outperform the collective



Issue: Expensive collectives

e Use non-blocking collectives (MPI_lalltoall,...)
e Allow for overlapping collectives with other operations, e.g.

computation, 1/O or other
communication

e Are in most cases faster
than the blocking
corresponds even without
the overlap

e Replacement is trivial
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Issue: Expensive collectives
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e Hand-written RDMA collectives may outperform those of

the MPI library

e Fortran coarrays, Unified Parallel C, MPI one-sided communication
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Issue: Expensive collectives

e On Cray XC, the sc. DMAPP implementation of collectives
will (usually significantly) improve the performance of the
expensive collectives

e Enabled by the variable MPICH_USE_DMAPP_COLL

e Consult 'man mpi’

P 8192 cores
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';_,: 800 >3X ,/‘ —#-MPI_Allreduce, no
s / DMAPP
% 600
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Message size [B]
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e Parallelize your 1/O'!

e MPII/O, I/O libraries (HDF5, NetCDF), hand-written schemas,...

e Without parallelization, 1/O will be a scalability bottleneck in every
application

e Try to hide I/O (asynchronous 1/O)

e Available on MPI I/O (MPI_File_iwrite/read(_at))

e One can also add dedicated "I/O servers” into code: separate MPI

tasks or dedicating one 1/O core per node on a hybrid MPI+OpenMP
application

/O

‘m 'm 'm Yo
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Issue: Performance bottlenecks due to I/O

e Tune filesystem (Lustre) parameters y
e Lustre stripe counts & sizes, see "man Ifs”

e Rule of thumb:

o #files># OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this way and
gain performance

o #files==1 => Set stripe_count=#0STs
Assuming you have more than 1 I/O client

o #files<#OSTs => Select stripe_count so that you use all OSTs
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Case study: Single-writer I/O

e 32 MB per OST (32 MB -5 GB) and 32 MB Transfer Size \

e Unable to take advantage of file system parallelism
e Access to multiple disks adds overhead which hurts performance
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Case study: Parallel I/O into a single file

e A particular code both reads and writes a 377 GB file, \
runs on 6000 cores
e Total I/O volume (reads and writes) is 850 GB
e Ultilizes parallel HDF5 1/O library
e Default stripe settings: count =4, size=1M
e 1800 s run time (~ 30 minutes)
e New stripe settings: count=-1, size=1M
e 625 s runtime (~ 10 minutes)
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Issue: Performance bottlenecks due to I/O

e Use I/O buffering for all sequential 1/0 \

e On Cray: IOBUF is a library that intercepts standard /O (stdio) and
enables asynchronous caching and prefetching of sequential file
access

e No need to modify the source code but just
e Load the module iobuf

e Rebuild your application

e Insert "export IOBUF_PARAMS=""" to your job script

e These params control e.g. which files are being buffered, how many
bufferes are used etc.

e See man iobuf
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Issue: Performance bottlenecks due to I/O

e When using MPI and making non-contiguous writes/reads
(e.g. multi-dimensional arrays), always define file views
with suitable user-defined types and use collective I/O

e Performance can be 100x compared to individual 1/0
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e Scaling up is the most important consideration in HPC \
e Possible approaches for alleviating typical scalability
bottlenecks
e Find the optimal rank placement

e Use non-blocking communication operations for both p2p and
collective communication

e Make more messages 'eager’ and/or employ the Asynchronous
Progress Engine (on Cray)

e Hybridize (=mix MPI+OpenMP) the code to improve load balance and
alleviate bottleneck collectives



Performance Engineering: CRAY |,
Concluding remarks SRR

e Mind your 1/O! \

e Use parallel 1/O
e Tune filesystem parameters

e Node-level performance considerations

e Good data locality and cache optimization crucial for performance,
together with vectorization

e Usually an interplay with the compiler - see the compiler feedback and
restructure loops to allow for compiler optimization
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Introduction to the lab session

e We will analyse and optimize applications throughout the
afternoon - more detailed instructions provided as
handouts.

e You are encouraged to work with your own application! In
case you don’t have one there’s a toy code for 2D heat
equation solver being provided.

e The lab is quite inexact - discuss with the instructors
about different strategies good for your code.



