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Performance engineering 

We want to get the most science 
and engineering through a 
supercomputing system as 
possible. 

The more efficient codes are, the 
more productive scientists and 
engineers can be. 
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Performance analysis 

To optimize code we must know what is taking the time 

 

 

Application Input Output 

Profile Data 

Top time consuming routines 

Load balance across processes and 

threads 

Parallel overhead 

Communication patterns 

Hardware utilization details 



Performance engineering – overview 

Wednesday 

9.15-9.45 
Introduction to performance engineering & 

briefly about ”optimal porting” 

10.00-10.15 Coffee break 

10.15-11.00 Application performance analysis 

11.00-11.15 Break 

11.15-12.00 Improving node-level efficiency 

12.00-13.00 Lunch break 

13.00-13.45 Improving parallel scalability 

13.45-14.00 Break 

14.00-17.00 
Hands-on session: application profiling & 

optimization (coffee being served at 15:00) 

+ A wrap-up & lab session review on Friday morning at 8:30 



INTRODUCTION TO PERFORMANCE 
ENGINEERING 

Lecture 1: 



Code optimization 

● Obvious benefits 

● Better throughput => more science 

● Cheaper than new hardware  

● Save energy, compute quota etc. 

● ..and some non-obvious ones 

● Collaboration opportunities 

● Potential for cross-disciplinary research 

● Deeper understanding of application 

 
 



Code optimization 

● Several trends making code optimization even more 
important 

● More and more cores 

● CPU’s vector units getting wider 

● The gap between CPU and memory speed ever increasing 

● Datasets growing rapidly but disk I/O performance lags behind 

 
 



Code optimization 

● Adapting the problem to the underlying hardware 

● Combination of many aspects 

● Effective algorithms 

● Implementation: Processor utilization & efficient memory use 

● Parallel scalability 

● Important to understand interactions 

● Algorithm – code – compiler – libraries – hardware 

● Performance is not portable! 



Memory hierarchy 

Registers 

L1 Cache 

L2 Cache 

L3 Cache 

Physical memory 

Remote memory (over interconnect) 

File system disks 

<= 1 

~4 

~10 

~25 

O(102) 

O(105...6) 

 O(100 B) 

O(10 kB) 

O(1 MB) 

O(10 MB) 

GB’s 

TB’s 

100s GB’s O(103) 



Why does scaling end? 
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Why does scaling end? 

● Amount of data per process small - computation takes 
little time compared to communication 

● Amdahl’s law in general 
● E.g., single-writer or stderr I/O 

● Load imbalance 

● Communication that scales badly with Nproc 

● E.g., all-to-all collectives 

● Congestion of network – too many messages or lots of 
data 



Not going to touch the source code? 

● Find the compiler and its compiler flags that yield the 
best performance 

● Employ tuned libraries wherever possible 

● Find suitable settings for environment parameters 

● Mind the I/O 
● Do not checkpoint too often 

● Do not ask for the output you do not need 

 



Compiler man pages (on Cray) 

● The cc, CC, and ftn man pages contain information 
about the compiler driver commands 

● Cray compiler: man craycc, crayCC, and crayftn 

● GNU compiler: man gcc, g++, and gfortran 

● PGI compiler: man pgf90, man pgcc, man pgCC 
● Intel: no man page available, but do ifort/icc –help 

● To verify that you are using the correct version of a 
compiler, use:  
● -V option on a cc, CC, or ftn command with CCE 

● --version option on a cc, CC, or ftn command with GNU 

 

 



Recommended compiler optimization flags 

Compiler Safe compromise Aggressive 

PGI -fast -fast -O3 -Mipa=fast,inline 

Cray (default level) -O3 -hfp3 

Intel -O3 -Ofast -ipa -unroll-

aggressive -align -fp-

model fast=2 

GNU -O3 -Ofast -funroll-all-loops 

On Cray systems, the CPU-specific optimizations are controlled with  

craype-* modules, e.g. craype-mc12 



Libraries 

● Most computational kernels in scientific computing are 
available in ready-to-run libraries 
● Tested - less latent bugs 

● Performance optimized 

● On Cray XE/XC the following system-tuned libraries are 
available 
● module cray-libsci : BLAS, CBLAS, LAPACK, ScaLAPACK (dense 

linear algebra), CRAFFT (FFT) 

● module fftw: FFTW 2.x and 3.x 

● module cray-petsc: PETSc (sparse linear algebra, PDE solvers, etc) 

● module cray-trilinos: Trilinos 

● module cray-tpsl:  MUMPS, ParMetis, SuperLU, SuperLU_DIST, 
Hypre, Scotch, and Sundials  

● module cray-hdf5(-parallel): HDF5 (I/O library) 



I/O optimization 

● Tuning filesystem (Lustre) parameters may improve 
application performance 
● Lustre stripe counts & sizes, see ”man lfs” 

● Rule of thumb:  

● # files > # OSTs => Set stripe_count=1 

You will reduce the lustre contention and OST file locking this way and 

gain performance 

● #files==1 => Set stripe_count=#OSTs  

Assuming you have more than 1 I/O client 

● #files<#OSTs => Select stripe_count  so that you use all OSTs 

● Use I/O buffering for all sequential I/O 
● IOBUF is a library that intercepts standard I/O (stdio) and enables 

asynchronous caching and prefetching of sequential file access 

● No need to modify the source code but just 

● Load the module iobuf 

● Rebuild your application 

 

 



MPI parameters (MPICH-based MPI libraries) 

● Consult man mpi for how to employ these and their proper 
description 

● Typically the best impact is seen from the variables 
● MPICH_GNI_MAX_EAGER_MSG_SIZE 

● Controls the used protocol for point-to-point message transmission 

● Usually increasing the default value improves 

●  MPICH_NEMESIS_ASYNC_PROGRESS 
● May improve sc. overlapping when using non-blocking communication 

● MPICH_RANK_REORDER_METHOD 
● Controls the placement of MPI tasks over the nodes 

● Usually requires an optimized placement from CrayPAT suite 

● MPICH_USE_DMAPP_COLL 
● Controls the implementation of collective operations 

● Requires the use of huge pages 

 



PERFORMANCE ANALYSIS 
Lecture 2: 



Application timing 

● Most basic information: total wall clock time 

● Built-in timers in the program (e.g. MPI_Wtime) 

● System commands (e.g. time) or batch system statistics 

● Built-in timers can provide also more fine-grained 
information 

● Have to be inserted by hand 

● Typically no information about hardware related issues 

● Information about load imbalance and communication statistics of 
parallel program is difficult to obtain 



Performance analysis tools 

● Instrumentation of code 
● Adding special measurement code to binary 

● Normally all routines do not need to be measured 

● Measurement: running the instrumented binary 
● Profile: sum of events over time 

● Trace: sequence of events over time 

● Analysis 
● Text based analysis reports 

● Visualization 
 

 



Profiling 

● Purpose of the profiling is to find the "hot spots" of the 
program 
● Usually execution time, also memory 

● Usually the code has to be recompiled or relinked, 
sometimes also small code changes are needed 

● Often several profiling runs with different techiques is 
needed 
● Identify the hot spots with one approach, identify the reason for poor 

performance 



The application execution is interrupted at constant 

intervals and the program counter and call stack is 

examined 

 

Profiling: sampling 

● Pros 
● Lightweight 

● Does not interfere the code 
execution too much 

 

● Cons 
● Not always accurate 

● Difficult to catch small functions 

● Results may vary between runs  

 



Profiling: tracing 

● Pros 
● Can record the program 

execution accurately and 
repeatedly 

● Cons 
● More intrusive 

● Can produce infeasible 
large log files 

● May change the 
performance behavior of the 
program 

Hooks are added to function calls (or user-defined 

points in program) and the required metric is recorded 



Code optimization cycle 

Instrument & run 

Identify scalability 
bottlenecks 

Identify single-
core issues 

Optimize 

Validate/debug 

Measure 
scalability 

Select 
test case 

Done 



Step 1: Choose a test problem 

● The dataset used in the analysis should 
● Make sense, i.e. resemble the intended use of the code 

● Be large enough for getting a good view on scalability 

● Be runable in a reasonable time  

● For instance, with simulation codes almost a full-blown model but run 
only for a few time steps 

● Should be run long enough that initialization/finalization 
stages are not exaggerated 
● Alternatively, we can exclude them during the analysis 
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Step 2: Measure scalability 

● Run the uninstrumented 
code with different core 
counts and see where the 
parallel scaling stops 

● Often we look at strong 
scaling 
● Also weak scaling is 

definitely of interest 



Step 3: Instrument & run 

● Obtain first a sampling profile to find which user functions 
should be traced 
● With a large/complex software, one should not trace them all: it 

causes excessive overhead 
● Tracing also e.g. MPI, I/O and library (BLAS, FFT,...) calls 

● Execute and record the first analysis with 
● The core count where the scalability is still ok 
● The core count where the scalability has ended 

 and identify the largest differences between these profiles 



Example with CrayPAT (1/2) 

● Load performance tools software 
  module load perftools 

● Re-build application (keep .o files) 
  make clean && make 

● Instrument application for automatic profiling analysis 
  pat_build a.out 
● You should get an instrumented program a.out+pat 

● Run the instrumented application (...+pat) to get a 
sampling profile 
● You should get a performance file (“<sdatafile>.xf”)  or multiple 

files in a directory <sdatadir> 



Example with CrayPAT (2/2) 

● Generate text report and an .apa instrumentation file 
 pat_report <sdatafile>.xf -o sampling.txt 

● Inspect the generated .apa file and sampling report 
whether additional instrumentation is needed 

● Instrument application for further analysis (a.out+apa) 
 pat_build –O <apafile>.apa 

● Re-run the newly instrumented application (...+apa) 
● Generate text report and visualization file (.ap2) 

 pat_report <data.xf> -o tracing.txt 
● View report in text and/or with Cray Apprentice2 

 app2 <datafile>.ap2 
 

 
 



Step 4: Identify scalability bottlenecks 

● What communication pattern and routines are dominating 
the true time spent for communication (excluding the sync 
times)? 

● How does the message-size profile look like? 

● Note that the analysis tools may report load imbalances as 
”real” communication 
● Put an MPI_Barrier before the suspicious routine - load imbalance will 

aggregate into it 

 



Example with CrayPAT 



Example with CrayPAT 

 

. 

   

 

 

Table 4:  MPI Message Stats by Caller 
 
    MPI Msg |MPI Msg |  MsgSz |  4KB<= |Function 
      Bytes |  Count |   <16B |  MsgSz | Caller 
            |        |  Count |  <64KB |  PE[mmm] 
            |        |        |  Count | 
 
 15138076.0 | 4099.4 |  411.6 | 3687.8 |Total 
|------------------------------------------------ 
| 15138028.0 | 4093.4 |  405.6 | 3687.8 |MPI_ISEND 
||----------------------------------------------- 
||  8080500.0 | 2062.5 |   93.8 | 1968.8 |calc2_ 
3|            |        |        |        | MAIN_ 
||||--------------------------------------------- 
4|||  8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0 
4|||  8208000.0 | 2000.0 |     -- | 2000.0 |pe.9 
4|||  6160000.0 | 2000.0 |  500.0 | 1500.0 |pe.15 
||||============================================= 
... 



Step 4: Identify scalability bottlenecks 

● Signature: User routines scaling but MPI time blowing up 
● Issue: Not enough to compute in a domain 

● Weak scaling could still continue 

● Issue: Expensive collectives 

● Issue: Communication increasing as a function of tasks 

● Signature: MPI_Sync times increasing 
● Issue: Load imbalance 

● Tasks not having a balanced role in communication? 

● Tasks not having a balanced role in computation? 

● Synchronous (single-writer) I/O or stderr I/O? 



Step 5: Find single-core hotspots 

● Remember: pay attention only to user routines that 
consume significant portion of the total time 

● Collect the key hardware counters, for example 

● L1 and L2 cache metrics (PAT_RT_PERFCTR=2) 

● use of vector (SSE/AVX) instructions (PAT_RT_PERFCTR=13) 

● Computational intensity (= ratio of floating point ops / memory 
accesses) (PAT_RT_PERFCTR=1, default) 

● Trace the “math” group to see if expensive operations 
(exp, log, sin, cos,...) have a significant role 



 

 

 

 

 

 

 
USER / conj_grad_.LOOPS 
------------------------------------------------------------------------------- 
  Time%                                               59.5% 
  Time                                            73.010370 secs 
  Imb. Time                                        3.563452 secs 
  Imb. Time%                                           4.7% 
  Calls                          1.383 /sec           101.0 calls 
  PERF_COUNT_HW_CACHE_L1D:ACCESS               183909710385 
  ... 
  SIMD_FP_256:PACKED_DOUBLE                      1961227352 
  User time (approx)            73.042 secs    189983282830 cycles  100.0% Time 
  CPU_CLK                        3.454GHz 
  HW FP Ops / User time        969.844M/sec     70839736685 ops    9.3%peak(DP) 
  Total DP ops                 969.844M/sec     70839736685 ops 
  Computational intensity         0.37 ops/cycle       0.33 ops/ref 
  MFLOPS (aggregate)         124140.04M/sec 
  TLB utilization              1058.97 refs/miss      2.068 avg uses 
  D1 cache hit,miss ratios       90.0% hits           10.0% misses 
  D1 cache utilization (misses)   9.98 refs/miss      1.248 avg hits 
  D2 cache hit,miss ratio        17.5% hits           82.5% misses 
  ... 
   
 

 

 

Example with CrayPAT 

Flat profile data 

HW counter values 

Derived  
metrics 



Step 5: Find single-core hotspots 

● CrayPAT has mechanisms for finding “the” hotspot in one 
routine (e.g. in case the routine contains several and/or 
long loops) 
● CrayPAT API 

● Possibility to introduce “PAT regions” to capture a certain piece of a 
function/subroutine 

● Loop statistics (works only with Cray compiler) 

● Compile & link with CCE using -h profile_generate 

● pat_report will generate loop statistics if the flag is being enabled 



Example with CrayPAT 

. 

 

 

Table 2:  Loop Stats from -hprofile_generate 
 
   Loop |Loop Incl |Loop Incl |  Loop |  Loop |    Loop |Function=/.LOOP\. 
   Incl |     Time |   Time / |   Hit | Trips |   Notes | PE='HIDE' 
 Time / |          |      Hit |       |   Avg |         | 
  Total |          |          |       |       |         | 
 
|------------------------------------------------------------------------- 
|  24.6% | 0.057045 | 0.000570 |   100 |  64.1 |   novec |calc2_.LOOP.0.li.614 
|  24.0% | 0.055725 | 0.000009 |  6413 | 512.0 |  vector |calc2_.LOOP.1.li.615 
|  18.9% | 0.043875 | 0.000439 |   100 |  64.1 |   novec |calc1_.LOOP.0.li.442 
|  18.3% | 0.042549 | 0.000007 |  6413 | 512.0 |  vector |calc1_.LOOP.1.li.443 
|  17.1% | 0.039822 | 0.000406 |    98 |  64.1 |   novec |calc3_.LOOP.0.li.787 
|  16.7% | 0.038883 | 0.000006 |  6284 | 512.0 |  vector |calc3_.LOOP.1.li.788 
|   9.7% | 0.022493 | 0.000230 |    98 | 512.0 |  vector |calc3_.LOOP.2.li.805 
|   4.2% | 0.009837 | 0.000098 |   100 | 512.0 |  vector |calc2_.LOOP.2.li.640 
|========================================================================= 
 



Step 5: Find single-core hotspots 

● Signature: Low L1 and/or L2 cache hit ratios 

● <96% for L1, <99% for L1+L2 

● Issue: Bad cache alignment 

● Signature: Low vector instruction usage 

● Issue: Non-vectorizable (hotspot) loops 

● Signature: Traced ”math” group featuring a significant 
portion in the profile 

● Issue: Expensive math operations 



The Golden Rules of profiling 

● Profile your code 

● The compiler/runtime will not do all the optimisation for you. 

● Profile your code yourself 

● Don't believe what anyone tells you. They're wrong. 

● Profile on the hardware you want to run on 

● Don't profile on your laptop if you plan to run on a Cray system. 

● Profile your code running the full-sized problem 

● The profile will almost certainly be qualitatively different for a test case. 

● Keep profiling your code as you optimize 

● Concentrate your efforts on the thing that slows your code down. 

● This will change as you optimise. 

● So keep on profiling. 



Web resources 

● CrayPAT documentation 
http://docs.cray.com 

● Scalasca  
http://www.scalasca.org/ 

● Paraver 
http://www.bsc.es/computer-sciences/performance-tools/paraver 

● Tau performance analysis utility 
http://www.cs.uoregon.edu/Research/tau 

 



IMPROVING NODE-LEVEL EFFICIENCY 
Lecture 3: 



Single-core performance analysis 

● Are the hotspot routines compute-bound or memory-
bound?  
● If computational intensity > 1.0 the routine is compute-bound, 

otherwise memory-bound 

● Signature: low L1 and/or L2 cache hit ratios 
● <96% for L1, <99% for L1+L2 

● Issue: Bad cache alignment 

● Signature: low vector instruction usage 
● Issue: Non-vectorizable (hotspot) loops 

● Signature: traced ”math” group featuring a significant 
portion in the profile 
● Issue: Expensive operations 



Doesn't the compiler do everything? 

● Not yet... 
● Standard answer, unchanged for the last 50 years or so 

● You can make a big difference to code performance 
● Helping the compiler spot optimisation opportunities 
● Using the insight of your application 
● Removing obscure (and obsolescent) “optimisations” in older code 

● Simple code is the best, until otherwise proven 

● No fixed rules: optimize on case-by-case basis 
● But first, check what the compiler is already doing 

 

 



Compiler feedback/output 

● Cray compiler: ftn –rm …   or    cc/CC –hlist=m … 
● Compiler generates an <source file name>.lst file that contains 

annotated listing of your source code 

● PGI compiler: ftn/cc -Minfo=all -Mneginfo 

● Intel compiler: ftn/cc -opt-report 3 -vec-report 6 

● If you want this into a file: add -opt-report-file=filename 

● See ifort --help reports 

● GNU compiler: ftn/cc -ftree-vectorizer-verbose=6 

 



Issue: Bad cache alignment  

● If multi-dimensional arrays are addressed in a wrong 
order, it causes a lot of cache misses = bad performance 
● C is row-major, Fortran column-major 

● A compiler may re-order loops automatically (see output) 

real a(N,M)  
real sum = 0; 
 
do i=1,N  
  do j=1,M 
    sum = sum + a(i,j) 
  end do 
end do 

real a(N,M) 
real sum = 0 
 
do j=1,M  
  do i=1,N 
    sum = sum + a(i,j) 
  end do 
end do 



Issue: Bad cache alignment 

● Loop blocking = Large loops are partitioned by hand such 
that the data in inner loops stays in caches 
● A prime example is matrix-matrix multiply coding 

● Complicated optimization: optimal block size is a machine 
dependent factor as there is a strong connection to L1 and 
L2 cache sizes 

● Some compilers do loop blocking automatically 
● See the compiler output 

● You can assist it using compiler pragmas/directives 



Cache Use in Stencil Computations 

● 2D Laplacian 
 

do j = 1, 8 

   do i = 1, 16 

      a = u(i-1,j) + u(i+1,j)  & 

          - 4*u(i,j)           & 

          + u(i,j-1) + u(i,j+1) 

   end do 

end do 

 

● Cache structure for this example: 

● Each line holds 4 array elements 
● Cache can hold 12 lines of u data 

● No cache reuse between outer loop 
iterations 

3 4 6 7 9 10 12 13 15 18 30 120 

i=1 

i=16 

j
=
1
 

j
=
8
 



Blocking to Increase Reuse 

● Unblocked loop: 120 cache misses 

● Block the inner loop 
 
do IBLOCK = 1, 16, 4 

   do j = 1, 8 

      do i = IBLOCK, IBLOCK + 3 

         a(i,j) = u(i-1,j) + u(i+1,j)  & 

                  - 4*u(i,j)           & 

                  + u(i,j-1) + u(i,j+1) 

      end do 

   end do 

end do 

 

● Now we have reuse of the “j+1” 
data 

3 4 6 7 8 9 10 11 12 20 80 

i=1 

i=13 

j
=
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j
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8
 

i=5 

i=9 



Blocking to Increase Reuse 

● One-dimensional blocking reduced 
misses from 120 to 80 

● Iterate over 4×4 blocks 
 
do JBLOCK = 1, 8, 4 

   do IBLOCK = 1, 16, 4 

      do j = JBLOCK, JBLOCK + 3 

         do i = IBLOCK, IBLOCK + 3 

            a(i,j) = u(i-1,j) + u(i+1,j)  & 

                     - 4*u(i,j)           & 

                     + u(i,j-1) + u(i,j+1) 

         end do 

      end do 

   end do 

end do 

 

● Better use of spatial locality (cache 
lines) 3 4 6 7 8 9 10 11 12 13 15 16 17 18 30 60 

i=1 

i=13 

j
=
1
 

j
=
5
 

i=5 

i=9 

  



Issue: Bad cache alignment 

Original loopnest Blocking with compiler 
directives 

Equivalent explicit code 

  
 
do k = 6, nz-5 
 do j = 6, ny-5 
  do i = 6, nx-5 
   ! stencil 
  enddo 
 enddo 
enddo 

!dir$ blockable(j,k) 
!dir$ blockingsize(16) 
do k = 6, nz-5 
 do j = 6, ny-5 
  do i = 6, nx-5 
   ! stencil 
  enddo 
 enddo 
enddo 

do kb = 6,nz-5,16 
 do jb = 6,ny-5,16 
  do k = kb,MIN(kb+16-
1,nz-5) 
   do j = 
jb,MIN(jb+16-1,ny-5) 
    do i = 6, nx-5 
     ! stencil 
    enddo 
   enddo 
  enddo 
 enddo 
enddo 

C:  
#pragma blockable(2) 
#pragma blockingsize(16) 

Loop depth 



Issue: Bad cache alignment 

● Loop fusion: Useful when the same data is used e.g. in 
two separate loops: cache-line re-use 

Original code Complete fusion Partial fusing 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
enddo 
 
do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 



Issue: Non-vectorizable loops 

● See compiler feedback on why some loops were not 
vectorized 
● CCE:  -hlist=a 

● Intel: -vec-report[0..5] 
● GNU: -ftree-vectorizer-verbose=5 

 
16.  + 1-------<   do j = 1,N 
17.    1             x = xinit 
18.  + 1 r4----<     do i = 1,N 
19.    1 r4            x = x + vexpr(i,j) 
20.    1 r4            y(i) = y(i) + x 
21.    1 r4---->     end do 
22.    1------->   end do ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16  

  A loop starting at line 16 was not vectorized 

because a recurrence was found on "y" at line 20. 

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18  

  A loop starting at line 18 was unrolled 4 times. 

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18  

  A loop starting at line 18 was not vectorized 

because a recurrence was found on "x" at line 19.    



Issue: Non-vectorizable loops 

● The compiler will only vectorize loops 

● Constant (unit) strides are best 

● Indirect addressing will not vectorize (efficiently) 

● Can vectorize across inlined functions but not if a 
procedure call is not inlined 

● Needs to know loop tripcount (but only at runtime) 
● i.e. DO WHILE style loops will not vectorize 

● No recursion allowed 



Issue: Non-vectorizable loops 

● Does the non-vectorized loop have true dependencies? 

● No: add the pragma/directive ivdep on top of the loop 

● Yes: Rewrite the loop 

● Convert loop scalars to vectors 

● Move if-statements out of the loop 

● If you cannot vectorize the entire loop, consider splitting it 
- so as much of the loop is vectorized as possible 

 



Issue: Non-vectorized loops 

38.    Vf------<   do i = 1,N 

39.    Vf            x(i) = xinit 

40.    Vf------>   end do 

41.               

42.    ir4-----<   do j = 1,N 

43.    ir4 if--<     do i = 1,N 

44.    ir4 if          x(i) = x(i) + vexpr(i,j) 

45.    ir4 if          y(i) = y(i) + x(i) 

46.    ir4 if-->     end do 

47.    ir4----->   end do 

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was interchanged with the loop starting at 

line 43. 

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43  

  A loop starting at line 43 was fused with the loop starting at line 38. 

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38  

  A loop starting at line 38 was vectorized. 

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was vectorized as part of the loop starting at 

line 38. 

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42  

  A loop starting at line 42 was unrolled 4 times. 

-37% 

x promoted to vector: trade 
slightly more memory for better 
performance 



Issue: Expensive operations 

● Cost of different scalar FP operations is roughly as 
follows: 

  ~1 cycle: +, * 

  ~20 cycles: /, sqrt() 

  ~100-300 cycles: sin, cos, exp, log, ... 

● Note that there is also instruction latency and issues 
related to the pipelining 

 



Issue: Expensive operations 

● Loop hoisting: try to get the expensive operations out 
of innermost loops 

● Minimize the use of sin, cos, exp, log, pow, ... 

● Consider precomputing values to lookup table 

● Use identities, e.g. 

● pow(x,2.5) = x*x*sqrt(x) 

● sin(x)*cos(x) = 0.5*sin(2*x) 



IMPROVING PARALLEL SCALABILITY 
Lecture 4: 



Scalability bottlenecks 

● Signature: user routines scaling but MPI time blowing up 

● Issue: Not enough to compute in a domain 

● Weak scaling could still continue 

● Issue: Expensive (all-to-all) collectives 

● Issue: Communication increasing as a function of tasks 

● Signature: MPI_Sync times increasing 

● Issue: Load imbalance 

● Tasks not having a balanced role in communication? 

● Tasks not having a balanced role in computation? 

● Synchronous (single-writer) I/O or stderr I/O? 



Issue: Load imbalances 

● Identify the cause 

● How to fix I/O related imbalance will be addressed later 

● Unfortunately algorithmic, decomposition and data 
structure revisions are needed to fix load balance issues 

● Dynamic load balancing schemas 

● MPMD style programming 

● There may be still something we can try without code re-design 



Issue: Load imbalances 

● Consider hybridization (mixing OpenMP with MPI) 

● Reduces the number of MPI tasks - less pressure for load balance 

● May be doable with very little effort 

● Just plug omp parallel do’s/for’s to the most intensive loops 

● However, in many cases large portions of the code has to be 
hybridized to outperform flat MPI 



Issue: Load imbalances 

● Changing rank placement 

● So easy to experiment with that it should be tested with every 
application! 

● CrayPAT is able to make suggestions for optimal rank placement: 
pat_report -O mpi_rank_order datafile.xf 

● This output can then be copied or written into a file named 
MPICH_RANK_ORDER and used with 
MPICH_RANK_REORDER_METHOD=3 

 

 

 



Issue: Point-to-point communication 
consuming time 

● Bandwidth and latency depend on the used protocol 

● Eager or rendezvous 

● Latency and bandwidth higher in rendezvous 

● Rendezvous messages usually do not allow for overlap of computation 
and communication, even when using non-blocking communication 
routines 

● The platform will select the protocol basing on the message size, 
these limits can be adjusted 

● See the CrayPAT report for the message size profile, which 
is the dominant protocol 
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Issue: Point-to-point communication 
consuming time 

● One way to improve performance is to send more 
messages using the eager protocol 

● This can be done by raising the value of the eager threshold, by 
setting environment variable: 
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X 

● Values are in bytes, the default is 8192 bytes. Maximum size is 
131072 bytes (128KB) 

● Have MPI_Irecv calls open before the corresponding 
MPI_Isend calls to avoid unnecessary buffer copies and 
buffer overflows 



Issue: Point-to-point communication 
consuming time 

● On Cray XE & XC: Asynchronous Progress Engine 

● Progresses rendezvous messages on the background by 
launching an extra helper thread to each MPI task 
● This will need spare cores or hyperthreads 

● Works only when running without hyperthreading  
(aprun -j1)  

● or with using specialized cores (aprun -r1) 

● Consult ‘man mpi’ and there the variable 
MPICH_NEMESIS_ASYNC_PROGRESS 



Issue: Expensive collectives 

● Reducing MPI tasks by hybridizing with OpenMP often 
helps 

● See if you can live with the basic version of a routine 
instead of a vector version (MPI_Alltoallv etc) 
● May be faster even if some tasks would be receiving data not 

referenced later 

● In case of (very) sparse Alltoallv’s, point-to-point 
communication may outperform the collective 



Issue: Expensive collectives 

● Use non-blocking collectives (MPI_Ialltoall,...) 
● Allow for overlapping collectives with other operations, e.g. 

computation, I/O or other  
communication 

● Are in most cases faster  
than the blocking  
corresponds even without  
the overlap 

● Replacement is trivial 
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Issue: Expensive collectives 

● Hand-written RDMA collectives may outperform those of 
the MPI library 
● Fortran coarrays, Unified Parallel C, MPI one-sided communication 

M
an

n
in

en
, C

R
ES

TA
 D

4.
5.

3 
(2

01
3)

 



Issue: Expensive collectives 

● On Cray XC, the sc. DMAPP implementation of collectives 
will (usually significantly) improve the performance of the 
expensive collectives 
● Enabled by the variable MPICH_USE_DMAPP_COLL 

● Consult ’man mpi’ 
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Issue: Performance bottlenecks due to I/O 

● Parallelize your I/O ! 

● MPI I/O, I/O libraries (HDF5, NetCDF), hand-written schemas,... 

● Without parallelization, I/O will be a scalability bottleneck in every 
application 

● Try to hide I/O (asynchronous I/O) 

● Available on MPI I/O (MPI_File_iwrite/read(_at)) 

● One can also add dedicated ”I/O servers” into code: separate MPI 
tasks or dedicating one I/O core per node on a hybrid MPI+OpenMP 
application 
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Issue: Performance bottlenecks due to I/O 

● Tune filesystem (Lustre) parameters 
● Lustre stripe counts & sizes, see ”man lfs” 

● Rule of thumb:  

● # files > # OSTs => Set stripe_count=1 
You will reduce the lustre contention and OST file locking this way and 
gain performance 

● #files==1 => Set stripe_count=#OSTs  
Assuming you have more than 1 I/O client 

● #files<#OSTs => Select stripe_count  so that you use all OSTs 

 



Case study: Single-writer I/O 

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size 
● Unable to take advantage of file system parallelism 

● Access to multiple disks adds overhead which hurts performance 
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Case study: Parallel I/O into a single file 

● A particular code both reads and writes a 377 GB file,  
runs on 6000 cores 
● Total I/O volume (reads and writes) is 850 GB 

● Utilizes parallel HDF5 I/O library 

● Default stripe settings:  count =4, size=1M 
● 1800 s run time (~ 30 minutes) 

● New stripe settings:  count=-1, size=1M 
● 625 s run time (~ 10 minutes) 



Issue: Performance bottlenecks due to I/O 

● Use I/O buffering for all sequential I/O 
● On Cray: IOBUF is a library that intercepts standard I/O (stdio) and 

enables asynchronous caching and prefetching of sequential file 
access 

● No need to modify the source code but just 
● Load the module iobuf 

● Rebuild your application 

● Insert ”export IOBUF_PARAMS=’*’” to your job script 

● These params control e.g. which files are being buffered, how many 
bufferes are used etc. 

● See man iobuf 

 



Issue: Performance bottlenecks due to I/O 

● When using MPI and making non-contiguous writes/reads 
(e.g. multi-dimensional arrays), always define file views 
with suitable user-defined types and use collective I/O 

● Performance can be 100x compared to individual I/O 



Performance Engineering: 
Concluding remarks 

● Scaling up is the most important consideration in HPC 

● Possible approaches for alleviating typical scalability 
bottlenecks 

● Find the optimal rank placement 

● Use non-blocking communication operations for both p2p and 
collective communication 

● Make more messages ’eager’ and/or employ the Asynchronous 
Progress Engine (on Cray) 

● Hybridize (=mix MPI+OpenMP) the code to improve load balance and 
alleviate bottleneck collectives 



Performance Engineering: 
Concluding remarks 

● Mind your I/O! 

● Use parallel I/O 

● Tune filesystem parameters 

● Node-level performance considerations 

● Good data locality and cache optimization crucial for performance, 
together with vectorization 

● Usually an interplay with the compiler - see the compiler feedback and 
restructure loops to allow for compiler optimization 

 



Introduction to the lab session 

● We will analyse and optimize applications throughout the 
afternoon - more detailed instructions provided as 
handouts. 

● You are encouraged to work with your own application! In 
case you don’t have one there’s a toy code for 2D heat 
equation solver being provided. 

● The lab is quite inexact - discuss with the instructors 
about different strategies good for your code. 


