
FUTURE PROGRAMMING
LANGUAGES

STEFANO MARKIDIS
KTH ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM

August 29 2014 – PDC Summer School

OUTLINE
•  Future Supercomputers and the Exascale Era
•  Motivation for new Programming Approaches:

•  Programming Models for Exascale Hardware
•  GPU and the MPI + X problem

•  Productivity (and still High Performance)
•  PGAS for Distributed Memory Machines
•  OpenACC and OpenMP for accelerators

•  Dynamic Load balancing
•  Task-based approaches

•  Conclusions

FUTURE PROGRAMMING
MODELS
HPC programming models are tailored to a given hardware/
architecture. The goal of programming models is to exploit efficiently
a given HW without the application developers focusing on lower
level details.

Future programming models need to address modern and future
trends in supercomputer architectures.

How the next generation supercomputer will be and what
programming models will be effective on that machine?

WHERE WE ARE TODAY Current The TOP 10 SystemsCurrent The TOP 10 Systems

500 Meteorological Cray XC30 Germany 7280 .134 91

From top500.org

WHEN EXASCALE ?

First exascale machine arriving in the time range 2018-2020

From top500.org

DARPA STUDY IDENTIFIES 3
EXASCALE CHALLENGES

Report published September 2008.

They concluded the three key
challenges were:

•  Energy and power consumption.

•  Memory and storage.

•  Fault-tolerance.

Most important issue is power
consumption. Linear
extrapolation of current
architectures indicates over
500 MW for 1 exaFLOP.

Available at http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/exascale_final_report_100208.pdf

THE EXASCALE MACHINE

THE POWER ISSUE FOR EXASCALE

The only certainty about
Exascale machine is that
power is the main design
constraint: there will be a 20
MW cap (Thianhe-2 is
already 17.8 MW).

At the moment, accelerators
and supercomputer with
accelerators are the most
power efficient.

Check green500 list.

Power EfficiencyPower Efficiency

BlueGene/Q

Cell

Mic

AMD

FirePro

Tsubame KFC

NVIDIA K20x

Power EfficiencyPower Efficiency

BlueGene/Q

Cell

Mic

AMD

FirePro

Tsubame KFC

NVIDIA K20x

From gren500.org

ACCELERATORS IN HPC

Performance Share of AcceleratorsPerformance Share of Accelerators

AcceleratorsAccelerators

From top500.org

12.2% of Top500 machines
use accelerators:. 4
supercomputers in the top 10
use accelerators.

Accelerators produces 35%
of the total computer power in
the top 500 supercomputers

PROGRAMMING MODELS FOR
ACCELERATORS

•  CUDA targets NVDIA GPU
•  OpenCL targets all the accelerators.
•  OpenACC targets only NVDIA GPU

•  OpenMP 4.0 targets all the
accelerators. Accelerators not
supported yet by compilers.

•  MPIVACH supports now Message
Passing from GPU memory to GPU
memory.

COMPILER
DIRECTIVES

C extension

MPI Library

THE MEMORY ISSUE

6

Why Less Memory Per Core?

•  Technology trends:
� Memory density 2X every 3 yrs; processor logic every 2
� Storage costs ($/MB) drops more gradually than logic costs

•  NERSC optimized the Hopper system for a diverse workload
�  fixed budget; memory cost is already a significant portion.

Source: David Turek, IBM

Cost of Computation vs. Memory

Source: IBM

6

Why Less Memory Per Core?

•  Technology trends:
� Memory density 2X every 3 yrs; processor logic every 2
� Storage costs ($/MB) drops more gradually than logic costs

•  NERSC optimized the Hopper system for a diverse workload
�  fixed budget; memory cost is already a significant portion.

Source: David Turek, IBM

Cost of Computation vs. Memory

Source: IBM

•  We know that memory per core
will be less as a technological
(and economical) trend:
memory density 2x every 3
years, processor logic 2x every
2 years

•  To move data becomes more
important (expensive €) than to
compute.

MEMORY ISSUE AND THE
MPI + X

MPI will be likely at exascale (vast
majority of applications use it).

MPI memory consumption on single
node is an important issue (and will be
even more serious at exascale). Use
MPI for inter-node communication and
use X for intra-node parallelism

How we deal with intra-node
parallelism? (less memory per core)

•  + OpenMP (performance issues)
•  + PGAS (see later in the lecture)
•  + MPI. MPI 3.0 and 3.1 provide

shared memory mechanisms (MPI
Win allocate shared and MPI
endpoints).

From a PRACE Survey about
57 applications

FAILURES AND FAULT TOLERANCE

At exascale, the number of faults is expected
to increase. On million of components, there
will always be one component that is not
working or not working properly.

The current approach to save snapshot of the
simulation data (check-pointing) and in case of
failures recover from snapshot.

At exascale, the time to save all the simulation
data is larger than average failure times.

Programming models should provide
mechanisms to identify processes/group of
processes undergoing failures, destroy them
and spawn new processes and communicator.

In particular we need dynamic process
management.

FUTURE PM: FOCUS ON
PRODUCTIVITY

The development of parallel code takes lot of
time. How long? In my experience, all large
production codes have +10 years of
development.

Part of this problem is that many developers
start the code and learn HPC during the
development of the code. (Trial/Error
development)

Many initiatives were born to provide
programming languages that allow fast
development. Most famous is the PERCS
project funded by DARPA.

WHAT IS PRODUCTIVITY IN HPC?

Make easier the development of a
parallel code:

•  Write less line of codes for achieving
same functionalities of codes written
in lower level languages, i.e. C + MPI

•  Have a language that makes you
avoid bugs, i.e. no pointers, no point-
to-point communication, no goto, …

•  Don’t deal with low-level stuff
(everything can be done by compiler/
runtime). What is low level is error-
prone and typically done much better
by the compiler.

WHY PRODUCTIVE
PROGRAMMING APPROACHES ?

HPC is reaching now new communities other
than the usual CFD, Biochemistry, Material
Science, Astrophysics communities.
For new HPC communities, good knowledge of
Matlab, R, and SQL:

-  Biology
-  Medicine
-  Humanities, i.e. archeologists
-  …

WHY PRODUCTIVE LANGUAGES ?
LEGACY CODES
Legacy code is code that relates to
a no-longer supported or
manufactured operating system or
other computer technology.

Typical examples are code written in
Fortran77 and still in use today.

Very common situation in University
groups working on codes coming
from the seventies (CFD, Weather
forecast, …)

Many of these codes were not
designed for running on
distributed memory machines
with accelerators

PRODUCTIVITY IDEAS IN HPC

MPI

CUDA,
OpenCL

PGAS

OpenACC,
OpenMP 4

DISTRIBUTED MEMORY MACHINE

GPU

PARTITIONED GLOBAL ADDRESS
SPACE (PGAS)

The PGAS programming model
provides a global shared (among
processes) memory space, that is
physically divided on different nodes.

Each Process (Thread) can remotely
and directly access this global shared
memory regardless this data is
physically located.

In PGAS programming models, the
communication is implicit (PGAS is
taking care of this for you); however
problems by accessing concurrently to
shared data might occur (race
conditions)

PGAS APPROACHES
Many of the PGAS languages originates from 2002 DARPA HPCS program. All
the major languages have a PGAS “extension”:
 C à UPC (Universal)
 C++ à Co-array C++
 Fortran à Co-array Fortran
 Java à Titanum

New parallel languages:
 Chapel (Cray)
 X10 (IBM)
 Frotress (Sun)

Libraries:
 Global Arrays
 OpenSHMEM
 GPI

USEFUL IF YOU HAVE
SERIAL CODE

BOLDEST APPROACH, USEFUL IF START NEW CODE

PGAS AS A “COMBINATION” OF
OPENMP AND MPI

OpenMP à Productivity
MPI à Performance

EXAMPLE: PGAS SHARED ARRAY

What happens if we want to calculate
a[1] = a[4] + a[5]; ?
the value a[5] is transferred to thread 1 by implicit
communication and summed to a[4] and set in thread 1 as
a[1]

a

THE “SHARED MEMORY” SIDE OF PGAS

From OpenMP and shared memory programming approaches, PGAS
is taking:

•  the shared and private variable scope. Shared accessible by all
the threads, and while each process has its own private variables
not accessible by other processes. This partition of memory space
between shared and private gives the P in PGAS

•  Work sharing (distribution of work among threads) similar to
#pragma omp parallel for, i.e in UPC upc_forall

•  Concept of affinity: association of one thread to one core (to
minimize thread migration and context switching)

•  Unfortunately for us, even challenge of detecting race-conditions
and checking correctness of the code.

THE “MPI” SIDE OF PGAS

PGAS programs operate in
Single Program, Multiple
Data (like MPI) fashion:
multiple processes execute
the same program, but the
execution paths can
depending on the process
ID.

This gives you a local view
of the processes, making
you thinking more often
about locality
(=performance)

UPC example

WHY TO USE PGAS IN MPI CODES ?

•  Typically PGAS is used with MPI because one-sided
communication is easier to use in PGAS than in MPI (this
especially true for MPI 2.0)

•  One-sided communication was faster in PGAS than MPI
(Hoefler’ group implementation much faster than previous)

•  On a single node, PGAS doesn’t use extra memory MPI uses
(buffers, …) – saw memory issue at exascale earlier.

SUITABILITY OF PGAS
FOR EXASCALE
•  PGAS reduces the need of temporary buffers and

allows for reduced synchronization. PGAS is well
suited for applications with irregular communication
pattern.

•  PGAS has good potential for exascale, but it requires
disruptive changes in data layout in the current codes
running on peta-scale supercomputers.

•  Codes need to use asynchronous algorithms to fully
exploit PGAS features. This requires the re-design of
communication pattern of applications

SCALING OF CAF + MPI IN A
LEGACY CODE

UPC/CAF compilers are available
on PDC Cray supercomputers.
Info on how to compile and run:

•  UPC (http://www.pdc.kth.se/

resources/software/installed-
software/compilers-and-
languages/upc)

•  CAF (http://www.pdc.kth.se/
resources/software/installed-
software/compilers-and-
languages/coarray-fortran)

Example codes are available too.

PGAS AT PDC

COMPILER DIRECTIVES FOR
ACCELERATOR PROGRAMMING
•  The most productive

approach is to instruct the
compiler where to run part of
the code (CPU/GPU) and let
the compiler handle the
memory transfer and code
translation for accelerator.

•  OpenACC, and openMP4,
provide a collection of
compiler directives to use
accelerators..

OPENMP FOR ACCELERATORS
AND OPENACC
There are currently two standardization efforts ongoing:

•  In the OpenMP Architecture Review Board (ARB) standards

committee, a subcommittee was established to develop an extension
to the existing OpenMP 3.0 standard that would target a wide class
of possible accelerators. This would include GPUs, but also
address other accelerators e.g. digital signal processors (DSPs).

•  However, there was a need for a minimal, interim standard to serve
early adopters of the directive programming model for GPU
programming model. To this end, the OpenACC standard launched in
November 2011, with support from NVIDIA and compiler developers
Cray, PGI and CAPS.

OPENACC: AN OPENMP FOR GPU
• A set of compiler directives (#pragma)

• Offload specific loops or parallelizable sections in code onto accelerators
#pragma acc parallel {

 for(i = 0; i < size; i++) {

 A[i] = B[i] + C[i];

 }

}
• Routines to allocate/free memory on accelerators

buffer = acc_malloc(MYBUFSIZE);

acc_free(buffer);

• Supported for C, C++ and Fortran

• Huge list of modifiers – copy, copyout, private, independent, etc..

EXAMPLE OF OPENACC IN
FORTRAN (AXB = C)

The outermost ‘data’ region ensures that the input matrices a and b are copied
to the GPU, and that the result c is copied back to the host. The outermost loop
over ‘imat’ is marked as being the place to start parallelization using the ‘kernels’
directive. All of the four loops are marked as parallelizable

OPENMP FOR ACCELERATORS

omp target [map] à marks a region to execute on device

omp teams à creates a league of thread teams

omp distribute à distributes a loop over the teams in the
league

omp declare target / omp end declare target à marks
function(s) that can be called on the device

OpenMP 4.0 allows host and device memory to be
shared. New pragmas:

Not “real” support from compilers, i.e. target
pragma always offloads to host in gcc.

MOTIVATION: LOAD BALANCING
In many problems, a problem could be
perfectly divided over processors, i.e.
PDE each process take part of the grid. In
this case, a processor would always be
performing useful work, and only be idle
because of communication.

A processor may be idle because it is
waiting for a message, and the sending
processor has not even reached the send
instruction in its code. This situation,
where one processor is working and
another is idle, is called load unbalance
à a process have been working if we had
distributed the work load differently

LOAD BALANCING

Dynamic load balancing issues
become even more important at
exascale. They arise from:

• Algorithm and applications:
adaptive grids, particle codes,…

• Hardware: computing resources
have different computing speed
(and memory access speed too).

• Hardware failures become more
likely at exascale. Need to give
work to other processes

DYNAMIC LOAD BALACING WITH
TASKS APPROACH

The task-based programming
approach is the best fit to solve
the dynamic load balancing
problem.

It is based on the over-
decomposition of the work,
we divide the work in more
tasks than processors. Tasks
are assigned to a work-pool,
and available processors take
next task from the pool
whenever they finish the job..

WORK-POOL AND SCHEDULER

How Many threads ?
Too few threads will undersubscribe
the system à waste some of the
available hardware resources.
Too many threads à oversubscribe
the system, causing the operating
system to have overhead as it must
time-slice access to the hardware
resources.
One common way to perform the
balancing act is to create a pool of
threads.
The application then dynamically
schedules computations (tasks) on
to threads in the thread pool.

TASK-BASED APPROACHES
•  CILK à extension to C including keywords

to handle parallel computing. Developed at
MIT and then bought by Intel. For shared
memory.

•  Intel Thread Bulilding Block (TBB) à Intel
template library for C++. A typical code with
TBB creates, synchronizes and destroy
graphs of depend tasks. For shared memory.

•  OpenMP Tasks (saw last week)

CILK – NESTED
PARALLELISM

Parallelism is expressed
using a spawn task
statement while a sync
statement forces a
parent task to wait until
all its children are
finished. Tasks may be
nested up to arbitrary
depth.

RECURSION WITH
TASKS
Tasks are effective with
recursion. Recursion is often
slower than iteration for serial
programming, but it turns out
that recursive parallelism has
some advantages over
iterative parallelism with
respect to load balancing and
cache reuse on multicore
processes

CACHE OBLIVIOUS TASK ALLOCATION

Cache oblivious = tailor task allocation
to caches size without knowing the
size of the caches.

The problem is divided into smaller and
smaller sub-problems. Eventually, one
reaches a sub-problem size that fits
into cache, regardless of the cache
size.

FFT algorithms can take advantage of
this cache oblivious technique.

CONVENIENCE OF TASK BASED
APPROACHES

Task approaches solve
the problem of dynamic
of load balancing but with
extra-cost of a scheduler
(overhead).

In order for an application
to benefit from task
approach, your algorithm
need to be formulated in
terms of tasks in a DAG
graph

THE PLASMA LIBRARY – RETHING
ALGORITHMS IN TERMS OF TASKS

•  One of the most famous example of
“rethinking” algorithms in terms of
tasks is the plasma library developed
by ORNL. It comprises linear systems
solvers and other linear algebra
routines.

•  Plasma uses tile algorithms that can
be represented as a DAG where
nodes represent the tasks in which the
operation can be decomposed and the
edges represent the dependencies
among them.

CONCLUSIONS
Future programming approaches will address new challenges
coming from HW:

•  power consumption à accelerators?

•  less memory per node à which programming model should we
use on single node ? à MPI + X issue

•  failure and fault tolerance à dynamic processes management

High Productivity is one of the main focuses for future programming
models:

•  PGAS for distributed memory machines

•  OpenACC and OpenMP 4

Dynamic Load Balancing:

•  Task-based programming approaches

