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FUTURE PROGRAMMING
MODELS

HPC programming models are tailored to a given hardware/
architecture. The goal of programming models is to exploit efficiently
a given HW without the application developers focusing on lower

level details.

Future programming models need to address modern and future
trends in supercomputer architectures.

¥

How the next generation supercomputer will be and what
programming models will be effective on that machine?




WHERE WE ARE TODAY
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WHEN EXASCALE ?

exaflop
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First exascale machine arriving in the time range 2018-2020
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Report published September 2008.

They concluded the three key
challenges were:

 Energy and power consumption.
« Memory and storage.

* Fault-tolerance.

Most important issue is power
consumption. Linear
extrapolation of current

architectures indicates over
500 MW for 1 exaFLOP.

ExascaleComputingStudyReports/exascale_final_report_100208.pdf




THE EXASCALE MACHINE

KTH Lindgren Tianhe-2 Exascale Machine Pufference
System & 131) #1) (Estimate) Tianhe-2 and
Exascale Machine

System peak 0.237 PFlops 33.87 PFlops | EFlops 29.5
Power 0.640 MW 17.8 MW goal 20-40 MW /

Node concurrency 24 148 1000-10000 7-67

Total concurrency 36,384 3,120,000 10° 320

Total memory 0.047 PB | PB 32-64 PB 32/64
Failure rate weeks 4 days | hour /




THE POWER ISSUE FOR EXASCALE
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ACCELERATORS IN HPC ,

i Intel Xeon Phi
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H IBM Cell

LI ATl Radeon
LINvidia Kepler
LI Nvidia Fermi

12.2% of Top500 machines
use accelerators:. 4
supercomputers in the top 10
use accelerators.

2006
2007
2008
2009
2010
2011
2012
2013
2014

40%
L=
E 35%
O o 30%
I E 25%
Accelerators produces 35% "'§ 5 0%
of the total computer power in 58 15%
the top 500 supercomputers  §  10%
- 5%
0%
&

From top500.org




PROGRAMMING MODELS FOR
ACCELERATORS

CUDA targets NVDIA GPU C extension
OpenCL targets all the accelerators.
OpenACC targets only NVDIA GPU

OpenMP 4.0 targets all the COMPILER
accelerators. Accelerators not DIRECTIVES
supported yet by compilers.

MPIVACH supports now Message MP! Library
Passing from GPU memory to GPU
memory.




THE MEMORY ISSUE

* We know that memory per core
will be less as a technological
(and economical) trend:
memory density 2x every 3
years, processor logic 2x every
2 years

 To move data becomes more
important (expensive €) than to
compute.

Evolution of memory density
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The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it




MEMORY ISSUE AND THE
MPI + X

e
MPI will be likely at exascale (vast

majority of applications use it). [ —
MPI memory consumption on single Ll
node is an important issue (and will be e B

even more serious at exascale). Use o s omow B oEow w0
MPI for inter-node communication and

use X for intra-node parallelism From a PRACE Survey about

57 applications
How we deal with intra-node
parallelism? (less memory per core)

MISTER
* + OpenMP (performance issues) \ %
* + PGAS (see later in the lecture)

- + MPI. MPI 3.0 and 3.1 provide
shared memory mechanisms (MPI
Win allocate shared and MPI
endpoints).




FAILURES AND FAULT TOLERANCE

At exascale, the number of faults is expected
to increase. On million of components, there
will always be one component that is not
working or not working properly.

SYSTEM
FAILURE

The current approach to save snapshot of the
simulation data (check-pointing) and in case
failures recover from snapshot.

At exascale, the time to save all the simulatic
data is larger than average failure times.

Programming models should provide
mechanisms to identify processes/group of
processes undergoing failures, destroy them
and spawn new processes and communicator.

In particular we need dynamic process
management.




FUTURE PM: FOCUS ON
PRODUCTIVITY

The development of parallel code takes lot of
time. How long? In my experience, all large

production codes have +10 years of
development.

Part of this problem is that many developers
start the code and learn HPC during the
development of the code. (Trial/Error
development)

Many initiatives were born to provide
programming languages that allow fast
development. Most famous is the PERCS
project funded by DARPA.




WHAT IS PRODUCTIVITY IN HPC?

Make easier the development of a
parallel code:

» Write less line of codes for achieving
same functionalities of codes written
in lower level languages, i.e. C + MPI

 Have a language that makes you
avoid bugs, i.e. no pointers, no point-
to-point communication, no goto, ...

« Don’t deal with low-level stuff
(everything can be done by compiler/
runtime). What is low level is error-
prone and typically done much better
by the compiler.




WHY PRODUCTIVE
PROGRAMMING APPROACHES ?

HPC is reaching now new communities other
than the usual CFD, Biochemistry, Material
Science, Astrophysics communities.

For new HPC communities, good knowledge of
Matlab, R, and SQL.:

- Biology
- Medicine
- Humanities, i.e. archeologists




WHY PRODUCTIVE LANGUAGES ?
LEGACY CODES

Legacy code is code that relates to
a no-longer supported or
manufactured operating system or
other computer technology.

Typical examples are code written in
Fortran77 and still in use today.

Very common situation in University
groups working on codes coming
from the seventies (CFD, Weather
forecast, ...)

Many of these codes were not
designed for running on
distributed memory machines
with accelerators




PRODUCTIVITY IDEAS IN HPC

DISTRIBUTED MEMORY MACHINE

MPl  messsss)  PGAS

CUDA -
., =) OpenACC,
OpenCL OpenMP 4




PARTITIONED GLOBAL ADDRESS
SPACE (PGAS)

PHYSICALLY
DISTRIBUTED DATA

The PGAS programming model
provides a global shared (among
processes) memory space, that is
physically divided on different nodes.

Each Process (Thread) can remotely ‘
and directly access this global shared
memory regardless this data is
physically located.

In PGAS programming models, the GLOBAL ADDRESS SPACE
communication is implicit (PGAS is
taking care of this for you); however
problems by accessing concurrently to
shared data might occur (race
conditions)

..........




PGAS APPROACHES

Many of the PGAS languages originates from 2002 DARPA HPCS program. All
the major languages have a PGAS “extension”:

C - UPC (Universal)

C++ > Co-array C++ USEFUL IF YOU HAVE
Fortran - Co-array Fortran SERIAL CODE

Java - Titanum
New parallel languages:
Chapel (Cray)
X10 (IBM) BOLDEST APPROACH, USEFUL IF START NEW CODE

Frotress (Sun)

Libraries:
Global Arrays
OpenSHMEM
GPI




PGAS AS A “COMBINATION” OF
OPENMP AND MPI

Shared Memory Model Message Passing Model

(last week) (this week)
Legend T ———————mn

1
]
O Thread/Process
: Address Space |

— Memory Access

-==3 Messages
OpenMP - Productivity O e CI) ? (I)
MPI = Performance e s

=== Messages /

<€




EXAMPLE: PGAS SHARED ARRAY a

a[1]|a[2] |a[3] |a[4] *a[5] |a[6] | ..

thread | thread 2 thread 3 thread 4 thread 5

What happens if we want to calculate
a[1] = a[4] + a[3]; ?
the value a[3] is transferred to thread 1 by implicit

communication and summed to a[4] and set in thread 1 as
a[1]




THE “SHARED MEMORY” SIDE OF PGAS

From OpenMP and shared memory programming approaches, PGAS
is taking:

the shared and private variable scope. Shared accessible by all
the threads, and while each process has its own private variables
not accessible by other processes. This partition of memory space
between shared and private gives the P in PGAS

Work sharing (distribution of work among threads) similar to
#pragma omp parallel for, i.e in UPC upc_forall

Concept of affinity: association of one thread to one core (to
minimize thread migration and context switching)

Unfortunately for us, even challenge of detecting race-conditions
and checking correctness of the code.




THE “MPI” SIDE OF PGAS

PGAS programs operate in
Single Program, Multiple
Data (like MPI) fashion:
multiple processes execute
the same program, but the
execution paths can
depending on the process
ID.

This gives you a local view
of the processes, making
you thinking more often
about locality
(=performance)

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

}
UPC example




WHY TO USE PGAS IN MPI CODES ?

« Typically PGAS is used with MPI because one-sided
communication is easier to use in PGAS than in MPI (this
especially true for MPI 2.0)

* One-sided communication was faster in PGAS than MPI
(Hoefler’ group implementation much faster than previous)

* On a single node, PGAS doesn’t use extra memory MPI uses
(buffers, ...) — saw memory issue at exascale earlier.




SUITABILITY OF PGAS
FOR EXASCALE

 PGAS reduces the need of temporary buffers and
allows for reduced synchronization. PGAS is well
suited for applications with irregular communication
pattern.

 PGAS has good potential for exascale, but it requires
disruptive changes in data layout in the current codes
running on peta-scale supercomputers.

« Codes need to use asynchronous algorithnms to fully
exploit PGAS features. This requires the re-design of
communication pattern of applications




SCALING OF CAF + MPIIN A
LEGACY CODE

T2047L137 model performance on HECToR (CRAY XEG6)
RAPS12 IFS (CY37R3), cce=7.4.4

APRIL 2012

w—|deal

“W=LCOARRAYS=T

=#=LCOARRAYS=F
2 0ORIGINAL

Forecast Days / Day

F -includes MPI optimisations to wave model + other opts

T -includes above & Legendre transform coarray optimization
100

Operational performance requirement
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PGAS AT PDC

UPC/CAF compilers are available
on PDC Cray supercomputers.
Info on how to compile and run: g

: 4

Home Support Resources Research News Events Education
* UPC (http://www.pdc.kth.se/
[] [] [] [ are here: Home » Resources  Software » Installed Software » Compilers and Languages » UPC

You

resources/software/installed- s i o oo
software/compilers-and-
languages/upc) S
o CAF (http://WWW.pAC.Kth.S@/ 1o s ot ey s
resources/software/installed- Efgs=
software/compilers-and-
languages/coarray-fortran)

Example codes are available too.




COMPILER DIRECTIVES FOR
ACCELERATOR PROGRAMMING

* The most productive
approach is to instruct the
compiler where to run part of OpenMP
the code (CPU/GPU) and let
the compiler handle the
memory transfer and code
translation for accelerator.

' )
ASAnviDia. P(;] ==esr c,q,os’

* OpenACC, and openMP4, ¥fika o) csos @
provide a collection of
compiler directives to use
accelerators..




OPENMP FOR ACCELERATORS
AND OPENACC

There are currently two standardization efforts ongoing:

* In the OpenMP Architecture Review Board (ARB) standards
committee, a subcommittee was established to develop an extension
to the existing OpenMP 3.0 standard that would target a wide class
of possible accelerators. This would include GPUs, but also
address other accelerators e.g. digital signal processors (DSPs).

« However, there was a need for a minimal, interim standard to serve
early adopters of the directive programming model for GPU
programming model. To this end, the OpenACC standard launched in
November 2011, with support from NVIDIA and compiler developers
Cray, PGl and CAPS.




OPENACC: AN OPENMP FOR GPU

» A set of compiler directives (#pragma)

» Offload specific loops or parallelizable sections in code onto accelerators
#pragma acc parallel {

for(i = 0; i < size; i++) {
Ali] = BIi] + C[iJ;
}
}

* Routines to allocate/free memory on accelerators
buffer = acc_malloc(MYBUFSIZE);

acc_free(buffer);

* Supported for C, C++ and Fortran

* Huge list of modifiers — copy, copyout, private, independent, etc.:




EXAMPLE OF OPENACC IN
FORTRAN (AXB = C)

double precision a(nl, n2, m), b(n2, n3, m), c(nl, n3, m)
double precision tmp

!Sacc data copyin(a,b) copyout(c)
!Sacc kernels loop independent

do imat =1, m

!$Sacc loop independent

do j =1, n3

!$Sacc loop independent

doi=1, nl

tmp = 0.0

!$acc loop

do k =1, n2

tmp = tmp + a(i,k,imat)*b(k,j,imat)
end do

c(i, j, imat) = tmp

end do

end do

!Sacc end kernels

end do

1Sacc end data

The outermost ‘data’ region ensures that the input matrices a and b are copied
to the GPU, and that the result c is copied back to the host. The outermost loop
over ‘imat’ is marked as being the place to start parallelization using the ‘kernels’
directive. All of the four loops are marked as parallelizable




OPENMP FOR ACCELERATORS

OpenMP 4.0 allows host and device memory to be
shared. New pragmas:

omp target [map] > marks a region to execute on device
omp teams - creates a league of thread teams

omp distribute - distributes a loop over the teams in the
league

omp declare target / omp end declare target > marks
function(s) that can be called on the device

Not “real” support from compilers, i.e. target
pragma always offloads to host in gcc.




MOTIVATION: LOAD BALANCING

In many problems, a problem could be
perfectly divided over processors, i.e.
PDE each process take part of the grid. In
this case, a processor would always be
performing useful work, and only be idle
because of communication.

A processor may be idle because it is
waiting for a message, and the sending
processor has not even reached the send
instruction in its code. This situation,
where one processor is working and
another is idle, is called load unbalance
—> a process have been working if we had
distributed the work load differently




LOAD BALANCING

Dynamic load balancing issues
become even more important at
exascale. They arise from:

* Algorithm and applications:
adaptive grids, particle codes,...

» Hardware: computing resources
have different computing speed

(and memory access speed t00).

» Hardware failures become more
likely at exascale. Need to give
work to other processes




DYNAMIC LOAD BALACING WITH
TASKS APPROACH

The task-based programming
approach is the best fit to solv
the dynamic load balancing

problem. ?
T ——— v
= = =——

It is based on the over- \%’J
=

decomposition of the work,
we divide the work in more
tasks than processors. Tasks
are assigned to a work-pool,
and available processors take
next task from the pool
whenever they finish the job..




WORK-POOL AND SCHEDULER

How Many threads ?

Too few threads will undersubscribe
the system - waste some of the Ty
available hardware resources.

“Sea” of tasks

Too many threads - oversubscribe = [
the system, causing the operating 0
system to have overhead as it must

time-slice access to the hardware

resources.

One common way to perform the
balancing act is to create a pool of
threads.

The application then dynamically
schedules computations (tasks) on
to threads in the thread pool.




TASK-BASED APPROACHES

 CILK - extension to C including keywords
to handle parallel computing. Developed at
MIT and then bought by Intel. For shared
memory.

* Intel Thread Bulilding Block (TBB) - Intel
template library for C++. A typical code with
TBB creates, synchronizes and destroy
graphs of depend tasks. For shared memory.

 OpenMP Tasks (saw last week)




CILK - NESTED
PARALLELISM C

int f£ib (int n) {
if (n<2) return (n);
else {

Parallelism is expressed int x,y;

using a spawn task e Sib(ad) .
statement while a sync return (x+y);
statement forces a } }

parent task to wait until ‘

all its children are Cilk
finished. Tasks may be “Hif (n<2) seturn (m)
nested up to arbitrary S int x,y:

depth. y = avn finn-2),

sync;
return (x+y)




RECURSION WITH
TASKS

Tasks are effective with
recursion. Recursion is often
slower than iteration for serial
programming, but it turns out
that recursive parallelism has
some advantages over
iterative parallelism with
respect to load balancing and
cache reuse on multicore
processes

AR HSIHON
RECURSION
RECI RSION
RECURSION

RECURSION |
RECURSION
RECURSION

Here we go again




CACHE OBLIVIOUS TASK ALLOCATION

Cache oblivious = tailor task allocation
to caches size without knowing the
size of the caches.

The problem is divided into smallerand ~ / 19
\

smaller sub-problems. Eventually, one I’" |
reaches a sub-problem size that fits OB]i]i}_‘I’}I\TgUS
into cache, regardless of the cache

size.

-
s

FFT algorithms can take advantage of
this cache oblivious technique.




CONVENIENCE OF TASK BASED
APPROACHES

Task approaches solve

the problem of dynamic
of load balancing but with °

extra-cost of a scheduler o

(overhead).
(2 O (30

In order for an application o

to benefit from task

approach, your algorithm o °
need to be formulated in

terms of tasks in a DAG
graph




THE PLASMA LIBRARY - RETHING
ALGORITHMS IN TERMS OF TASKS

PLASMA

* One of the most famous example of Tile Algorithms
“rethin_king” algorithrr_ls in terms of =l afan-
tasks is the plasma library developed e —
by ORNL. It comprises linear systems AT
solvers and other linear algebra o
routines.

« Plasma uses tile algorithms that can - /K :
be represented as a DAG where '[ GEMM & D 1
nodes represent the tasks in which the SvRK T s
operation can be decomposed and the e Wy B
edges represent the dependencies @B\ l /
among them. Example of DAG for a %

Cholesky Factorization E



CONCLUSIONS

Future programming approaches will address new challenges
coming from HW.

« power consumption - accelerators?

* less memory per node = which programming model should we
use on single node ? - MPI + X issue

« failure and fault tolerance - dynamic processes management

High Productivity is one of the main focuses for future programming
models:

« PGAS for distributed memory machines
 OpenACC and OpenMP 4
Dynamic Load Balancing:

« Task-based programming approaches




