
2014-08-20

1

Shared memory
programming with OpenMP
Mats Brorsson

Professor

Shared memory Parallel Programming

Basic assumptions:

• Shared memory hardware support

-There are multicores without shared
memory also, but that’s a different course

• An operating system that can provide

- Processes with individual address spaces

- Threads that share address space within
a process

- The OS schedules threads for execution
on the cores

2

Processes & Threads

Memory

C C C C

Operating system

Process

T T T

Process

T T

2014-08-20

2

Processes vs threads

• The process is a container with
capabilities and access rights to
shared resources

- Address space

- Files

- Code

- Data

• Any program starts its execution
as a single thread

• New threads can be created
through OS calls

Code

Static data

Thread

Stack

Thread

Stack

Thread

Stack

Shared address space

Concurrency vs Parallelism

As defined by Sun/Oracle:

• Concurrency: A condition that exists when at least
two threads are making progress. A more generalized
form of parallelism that can include time-slicing as a
form of virtual parallelism.

- A property of the program/system

• Parallelism: A condition that arises when at least two
threads are executing simultaneously.

- A run-time behaviour of executing a concurrent program

Thread 1

Thread 2

Thread 1

Thread 2

2014-08-20

3

In other words…

• Concurrency: A condition of a system in which
multiple tasks are logically active at one time..

• Parallelism: A condition of a system in which multiple
tasks are actually active at one time.

All programs

Concurrent
programs

Parallel
programs

OpenMP

• A standardized (portable) way for writing concurrent
programs for shared memory multiprocessors

- For C/C++/Fortran

T

T

T T

T

Shared
memory

Private
memory

Private
memory

Private
memory

Private
memory

Private
memory

Abstract machine model:
• Concurrent threads

(~cores)
• A shared address space
• Private memory to each

thread

2014-08-20

4

OpenMP

• A standardized (portable) way for writing concurrent
programs for shared memory multiprocessors

- For C/C++/Fortran

Shared memory

P PP P P

Private
memory

Private
memory

Private
memory

Private
memory

Private
memory

T TT T T A more concrete model:
• Threads are scheduled

on processors by the OS
• The private memory is

located in the shared
address space

• There are local memory
to each processor
• Caches
• NUMA

The evolution
of OpenMP

2014-08-20

5

Agenda

Wednesday 20 Aug

• 9-10 The basic concepts of OpenMP

• 10-12 Core features of OpenMP

» Parallel for (do) loops

» Tasks

• 13-14 Working with OpenMP

Thursday 21 Aug

• 9-10 Task dependencies and accelerators

» OpenMP 4.0

• 10-12 Looking forward

» Alternatives to OpenMP

» Future OpenMP

» Recap

Acknowledgment

• Many slides are developed by Tim Mattson and others
at Intel under the creative commons license

• Thanks!

2014-08-20

6

Caveat

• All programming examples are in C (C++)

• I can not provide equivalent examples in Fortran

• Ask if you are unsure about C

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

7

13

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

• A set of compiler directives and library routines for
parallel application programmers

• Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

• Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

14

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN

2014-08-20

8

15

OpenMP core syntax

• Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]…]

- Example

#pragma omp parallel num_threads(4)
• Function prototypes and types in the file:

#include <omp.h>
• Most OpenMP* constructs apply to a “structured block”.

- Structured block: a block of one or more statements with one point of
entry at the top and one point of exit at the bottom.

- It’s OK to have an exit() within the structured block.

16

Exercise 1, Part A: Hello world
Verify that your environment works

•Write a program that prints “hello world”.

int main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

2014-08-20

9

17

Exercise 1, Part B: Hello world
Verify that your OpenMP environment
works

•Write a multithreaded program that prints “hello world”.

void main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include “omp.h” Switches for compiling and linking

gcc -fopenmp gcc

icc –openmp intel (linux)

cc –xopenmp Oracle cc

18

Exercise 1: Solution

A multi-threaded “Hello world”
program

• Write a multithreaded program where each thread prints “hello
world”.

#include “omp.h”

void main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default

number of threads

Runtime library function to return

a thread ID.End of the Parallel region

2014-08-20

10

19

OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.

• Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:

• race condition: when the program’s outcome changes as the threads are
scheduled differently.

• To control race conditions:

• Use synchronization to protect data conflicts.

• Synchronization is expensive so:

• Change how data is accessed to minimize the need for synchronization.

20

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

11

21

OpenMP Programming Model:

Fork-Join Parallelism:
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals are met:
i.e. the sequential program evolves into a parallel program.

Parallel Regions
Master

Thread

in red

A Nested

Parallel

region

Sequential Parts

22

Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

Runtime function to

request a certain

number of threads

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

2014-08-20

12

23

Thread Creation: Parallel
Regions

• You create threads in OpenMP* with the parallel construct.

• For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread

executes a

copy of the

code within

the

structured

block

clause to request a certain

number of threads

Runtime function

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

24

Thread Creation: Parallel Regions
example

•Each thread executes the
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single

copy of A is

shared

between all

threads.

Threads wait here for all threads to finish

before proceeding (i.e. a barrier)
* The name “OpenMP” is the property of the OpenMP Architecture Review Board

2014-08-20

13

What an OpenMP compiler does

• The OpenMP compiler generates code
logically analogous to that on the right
of this slide, given an OpenMP pragma
such as that on the top-left

• All known OpenMP implementations
use a thread pool so full cost of threads
creation and destruction is not incurred
for reach parallel region.

• Only three threads are created because
the last parallel section will be invoked
from the parent thread.

#pragma omp parallel num_threads(4)

{

foobar ();

}

void thunk ()

{

foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)

pthread_create (&tid[i],

0,thunk,

0);

thunk();

for (int i = 1; i < 4; ++i)

pthread_join (tid[i]);

26

Exercises 2 to 4:
Numerical Integration

4.0

(1+x2) dx =
0

1

 F(xi)x
i = 0

N

Mathematically, we know that:

We can approximate the integral as

a sum of rectangles:

Where each rectangle has width x

and height F(xi) at the middle of

interval i.

4.0

2.0

1.0

X
0.0

2014-08-20

14

27

Exercises 2 to 4: Serial PI
Program
static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

28

Exercise 2

• Create a parallel version of the pi program using a
parallel construct.

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, you will need the
runtime library routines

- int omp_get_num_threads();

- int omp_get_thread_num();

- double omp_get_wtime();

Time in Seconds since a fixed

point in the past

Thread ID or rank

Number of threads in the

team

2014-08-20

15

29

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

30

Discussed

later

Synchronization

• High level synchronization:

• critical

• atomic

• barrier

• ordered

• Low level synchronization

• flush

• locks (both simple and nested)

Synchronization is used
to impose order
constraints and to
protect access to shared
data

2014-08-20

16

31

Synchronization: critical

• Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+nthrds){

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

Threads wait their

turn – only one at

a time calls

consume()

#pragma omp parallel

{

double tmp, B;

B = DOIT();

#pragma omp atomic

X += big_ugly(B);

}

#pragma omp parallel

{

double tmp, B;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic

X += tmp;

}

Atomic only protects the

read/update of X

32

Synchronization: Atomic

• Atomic provides mutual exclusion but only applies to the
update of a memory location (the update of X in the following
example)

2014-08-20

17

33

Exercise 3

• In exercise 2, you probably used an array to create
space for each thread to store its partial sum.

• If array elements happen to share a cache line, this
leads to false sharing.

• Non-shared data in the same cache line so each update
invalidates the cache line … in essence “sloshing independent
data” back and forth between threads.

• Modify your “pi program” from exercise 2 to avoid
false sharing due to the sum array.

34

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

18

35

Discussed later

SPMD vs. worksharing

• A parallel construct by itself creates an SPMD or
“Single Program Multiple Data” program … i.e., each
thread redundantly executes the same code.

• How do you split up pathways through the code
between threads within a team?
- This is called worksharing

• Loop construct

• Sections/section constructs

• Single construct

• Task construct …. Available in OpenMP 3.0

36

The loop worksharing Constructs

• The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct name:

• C/C++: for

• Fortran: do

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

2014-08-20

19

37

Loop worksharing Constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1) iend = N;

for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region (SPMD)

OpenMP parallel

region and a

worksharing for

construct

38

loop worksharing constructs:
The schedule clause

•The schedule clause affects how loop iterations are
mapped onto threads
- schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

- schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

- schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks

down to size “chunk” as the calculation proceeds.

- schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE environment variable (or the
runtime library … for OpenMP 3.0).

- schedule (auto)

– Schedule is up to the run-time to choose (does not have to be any of the above).

2014-08-20

20

Why different schedules?

•Consider a loop with 12 iterations with the following
execution times
- 10, 6, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1

•Assume four threads (cores)

T 0 1 2 3

static, 3

0 1 2 3

dynamic, 1

0 1 2 3

static, 1

40

Schedule
Clause

When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

AUTO When the run-time can
“learn” from previous
executions of the same
loop

loop work-sharing constructs:
The schedule clause

Least work at

runtime :

scheduling done

at compile-time

Most work at

runtime :

complex

scheduling logic

used at run-time

2014-08-20

21

41

Combined parallel/worksharing
construct

• OpenMP shortcut: Put the “parallel” and
the worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++)

{
res[i] = huge();

}
}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

42

Working with loops

• Basic approach

- Find compute intensive loops (use a profiler)

- Make the loop iterations independent .. So they can safely execute in
any order without loop-carried dependencies

- Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j);

} Remove loop

carried

dependence

Note: loop index

“i” is private by

default

2014-08-20

22

Nested loops

• For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

•Will form a single loop of length NxM and then parallelize
that.

•Useful if N is O(no. of threads) so parallelizing the outer
loop makes balancing the load difficult

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

Number of loops to be
parallelized, counting
from the outside

44

Parallel loops

• Guarantee that this works … i.e. that the same schedule is used in
the two loops:

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++){

a[i] =

}

#pragma omp for schedule(static)

for (i=0; i<n; i++) {

.... = a[i]

}

2014-08-20

23

45

Reduction

•We are combining values into a single accumulation
variable (ave) … there is a true dependence between
loop iterations that can’t be trivially removed

•This is a very common situation … it is called a
“reduction”.

•Support for reduction operations is included in most
parallel programming environments.

double ave=0.0, A[MAX];
int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

 How do we handle this case?

46

Reduction
•OpenMP reduction clause:

reduction (op : list)

•Inside a parallel or a work-sharing construct:

• A local copy of each list variable is made and
initialized depending on the “op” (e.g. 0 for “+”).

• Updates occur on the local copy.

• Local copies are reduced into a single value and
combined with the original global value.

•The variables in “list” must be shared in the
enclosing parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

2014-08-20

24

47

OpenMP: Reduction operands/initial-
values

• Many different associative operands can be used with reduction:

• Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

48

Exercise 4: Pi with loops

• Go back to the serial pi program and parallelize it with a
loop construct

• Your goal is to minimize the number of changes made to
the serial program.

2014-08-20

25

Serial Pi program
static long num_steps = 100000;

double step;

void main ()

{

int i;

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

Parallel Pi program
static long num_steps = 100000;

double step;

void main ()

{

int i;

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)

for (i=0;i< num_steps; i++){

double x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

2014-08-20

26

51

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

52

Synchronization: Barrier

• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)

{

id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id);

}

implicit barrier at the end of a

parallel region

implicit barrier at the end of a for

worksharing construct

no implicit barrier

due to nowait

2014-08-20

27

53

Master Construct

• The master construct denotes a structured block that is only
executed by the master thread.

• The other threads just skip it (no synchronization is implied).

#pragma omp parallel

{

do_many_things();

#pragma omp master

{ exchange_boundaries(); }

#pragma omp barrier

do_many_other_things();

}

54

Single worksharing Construct

•The single construct denotes a block of code that is
executed by only one thread (not necessarily the
master thread).

•A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{

do_many_things();

#pragma omp single

{ exchange_boundaries(); }

do_many_other_things();

}

2014-08-20

28

55

Sections worksharing Construct
• The Sections worksharing construct gives a different structured

block to each thread.

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

X_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}
By default, there is a barrier at the end of the “omp

sections”. Use the “nowait” clause to turn off the barrier.

56

Synchronization: ordered

• The ordered region executes in the sequential order.

#pragma omp parallel private (tmp)

#pragma omp for ordered reduction(+:res)

for (I=0;I<N;I++){

tmp = NEAT_STUFF(I);

#pragma omp ordered

res += consum(tmp);

}

2014-08-20

29

57

Synchronization: Lock routines

• Simple Lock routines:

- A simple lock is available if it is unset.

–omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(),
omp_destroy_lock()

• Nested Locks

- A nested lock is available if it is unset or if it is set but owned by the thread
executing the nested lock function

–omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the

lock, so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence
(a “flush”) of all
thread visible
variables

58

Synchronization: Simple Locks

• Protect resources with locks.

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}
omp_destroy_lock(&lck);

Wait here for your
turn.

Release the lock so the
next thread gets a turn.

Free-up storage when done.

2014-08-20

30

59

Runtime Library routines

•Runtime environment routines:
• Modify/Check the number of threads

–omp_set_num_threads(),
omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

• Are we in an active parallel region?

–omp_in_parallel()
• Do you want the system to dynamically vary the number of

threads from one parallel construct to another?

–omp_set_dynamic, omp_get_dynamic();
• How many processors in the system?

–omp_num_procs()

…plus a few less commonly used routines.

60

Runtime Library routines

•To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic
adjustment of the number of threads, (2) set the number
of threads, then (3) save the number you got.

#include <omp.h>

void main()

{ int num_threads;

omp_set_dynamic(0);

omp_set_num_threads(omp_num_procs());

#pragma omp parallel

{ int id= omp_get_thread_num();

#pragma omp single

num_threads = omp_get_num_threads();

do_lots_of_stuff(id);

}

}

Protect this op since Memory

stores are not atomic

Request as many threads as

you have processors.

Disable dynamic adjustment of the

number of threads.

Even in this case, the system may give you fewer threads

than requested. If the precise # of threads matters, test for

it and respond accordingly.

2014-08-20

31

61

Environment Variables

• Set the default number of threads to use.

–OMP_NUM_THREADS int_literal
• Control how “omp for schedule(RUNTIME)” loop iterations are

scheduled.

–OMP_SCHEDULE “schedule[, chunk_size]”

… Plus several less commonly used environment variables.

62

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

32

63

Data environment:
Default storage attributes

•Shared Memory programming model:
• Most variables are shared by default

•Global variables are SHARED among threads
• Fortran: COMMON blocks, SAVE variables, MODULE

variables

• C: File scope variables, static

• Both: dynamically allocated memory (ALLOCATE, malloc,
new)

•But not everything is shared...
• Stack variables in subprograms(Fortran) or functions(C)

called from parallel regions are PRIVATE

• Automatic variables within a statement block are PRIVATE.

64

double A[10];

int main() {

int index[10];

#pragma omp parallel

work(index);

printf(“%d\n”, index[0]);

}

extern double A[10];

void work(int *index) {

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are

shared by all threads.

temp is local to each

thread

2014-08-20

33

65

Data sharing:
Changing storage attributes

•One can selectively change storage attributes for
constructs using the following clauses*

• shared

• private

• firstprivate

•The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:

• lastprivate

•The default attributes can be overridden with:

• default (private | shared | none)

All the clauses on this page apply

to the OpenMP construct NOT to

the entire region.

All data clauses apply to parallel constructs and worksharing constructs except

“shared” which only applies to parallel constructs.

default(private) is Fortran only

66

Data Sharing: Private Clause

void wrong() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

•private(var) creates a new local copy of var for each thread.

• The value is uninitialized

• In OpenMP 2.5 the value of the shared variable is undefined after
the region

tmp was not

initialized

tmp: 0 in 3.0,

unspecified in 2.5

2014-08-20

34

68

Data Sharing: Firstprivate Clause

•Firstprivate is a special case of private.

• Initializes each private copy with the corresponding
value from the master thread.

tmp: 0 in 3.0, unspecified in 2.5

void useless() {

int tmp = 0;

#pragma omp parallel for firstprivate(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

Each thread gets its own tmp

with an initial value of 0

69

Data sharing: Lastprivate Clause

•Lastprivate passes the value of a private from the
last iteration to a global variable.

tmp is defined as its value at the “last

sequential” iteration (i.e., for j=999)

void closer() {

int tmp = 0;

#pragma omp parallel for firstprivate(tmp) \

lastprivate(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

Each thread gets its own tmp with

an initial value of 0

2014-08-20

35

70

Data Sharing:
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C local to each thread or shared inside the parallel region?

• What are their initial values inside and values after the parallel region?

variables A,B, and C = 1

#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are local to each thread.

– B’s initial value is undefined

– C’s initial value equals 1

Outside this parallel region ...

 The values of “B” and “C” are unspecified in OpenMP 2.5, and in
OpenMP 3.0 if referenced in the region but outside the construct.

71

Data Sharing: Default Clause

•Note that the default storage attribute is DEFAULT(SHARED)

(so no need to use it)

- Exception: #pragma omp task

•To change default: DEFAULT(PRIVATE)

- each variable in the construct is made private as if specified in
a private clause

- mostly saves typing

• DEFAULT(NONE): no default for variables in static extent.
Must list storage attribute for each variable in static extent.
Good programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

2014-08-20

36

73

Exercise 6: Molecular dynamics

• The code supplied is a simple molecular dynamics
simulation of the melting of solid argon.

• Computation is dominated by the calculation of force
pairs in subroutine forces (in forces.c)

• Parallelise this routine using a parallel for construct
and atomics. Think carefully about which variables
should be shared, private or reduction variables.

• Use tools to find data races

• Experiment with different schedules kinds.

74

Exercise 6 (cont.)

• Once you have a working version, move the parallel
region out to encompass the iteration loop in main.c
- code other than the forces loop must be executed by a

single thread (or workshared).

- how does the data sharing change?

• The atomics are a bottleneck on most systems.
- This can be avoided by introducing a temporary array for

the force accumulation, with an extra dimension indexed
by thread number.

- Which thread(s) should do the final accumulation into f?

2014-08-20

37

75

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

A motivational example: List traversal

• How to parallelize this code with known constructs of
OpenMP?

• Remember, the loop worksharing construct only works
with loops for which the number of loop iterations can
berepresented by a closed-form expression at
compiler time.

• While loops are not covered.

p=head;

while (p) {

process(p);

p = p->next;

}

2014-08-20

38

List traversal with for-loops

• Find out the length of list

• Copy pointer to each node in
an array

• Process nodes in parallel with a
for loop

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel for

for(i=0; i<count; i++)

processwork(parr[i]);

78

OpenMP tasks

• Introduced with OpenMP 3.0

• A task has

- Code to execute

- A data environment (it owns its data)

- An assigned thread that executes the code and uses
the data

• Two activities: packaging and execution

- Each encountering thread packages a new instance of
a task (code and data)

- Some thread in the team executes the task at some
later time

2014-08-20

39

Task parallelism

Sequential

thread(s)

create-task

Task dependency

graph
Ready

queue

Worker 1

Worker 2

Worker 3

…

Workers

New tasks

An example of task-parallelism

The need for synchronization:
• The return statement must

be executed after both
recursive calls have been
completed because of data-
dependence on a and b.

• The (naïve) sequential Fibonacci calculation

int fib(int n){

if(n<2) return n;

else {

int a,b;

a = fib(n-1);

b = fib(n-2);

return a+b;

}

}

Parallelism in fib:
• The two recursive calls are

independent and can be
computed in any order and
in parallel

• It helps that fib is side-effect
free but disjoint side-effects
are OK

2014-08-20

40

int fib(int n){

if(n<2) return n;

else {

int a,b;

#pragma omp task shared(a) if (n>30)

a = fib(n-1);

#pragma omp task shared(b) if (n>30)

b = fib(n-2);

#pragma omp taskwait

return a+b;

}

}

A task-parallel fib in OpenMP 3.0

Starting code:

...

#pragma omp parallel

#pragma omp single

fib(n);

...

82

Definitions

• Task construct – task directive plus structured block

• Task – the package of code and instructions for
allocating data created when a thread encounters a
task construct

• Task region – the dynamic sequence of instructions
produced by the execution of a task by a thread

2014-08-20

41

83

Tasks and OpenMP

•Tasks have been fully integrated into OpenMP

•Key concept: OpenMP has always had tasks, we just
never called them that.
- Thread encountering parallel construct packages up a set of implicit

tasks, one per thread.

- Team of threads is created.

- Each thread in team is assigned to one of the tasks (and tied to it).

- Barrier holds original master thread until all implicit tasks are finished.

•We have simply added a way to create a task
explicitly for the team to execute.

•Every part of an OpenMP program is part of one task
or another!

84

task Construct

#pragma omp task [clause[[,]clause] ...]

structured-block

if (expression)

untied

shared (list)

private (list)

firstprivate (list)

default(shared | none)

where clause can be one of:

2014-08-20

42

85

The if clause

 When the if clause argument is false

The task is executed immediately by the encountering thread.

The data environment is still local to the new task...

 ...and it’s still a different task with respect to synchronization.

 It’s a user directed optimization

when the cost of deferring the task is too great compared to
the cost of executing the task code

 to control cache and memory affinity

86

When/where are tasks complete?

 At thread barriers, explicit or implicit

applies to all tasks generated in the current parallel region up
to the barrier

matches user expectation

 At task barriers

 i.e. Wait until all tasks defined in the current task have
completed.

#pragma omp taskwait

Note: applies only to tasks generated in the current task, not to
“descendants” .

2014-08-20

43

87

Example – parallel pointer
chasing using tasks

#pragma omp parallel

{

#pragma omp single private(p)

{

p = listhead ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

p is firstprivate inside

this task

88

Example – parallel pointer
chasing on multiple lists using
tasks

#pragma omp parallel

{

#pragma omp for private(p)

for (int i =0; i <numlists ; i++) {

p = listheads [i] ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

2014-08-20

44

89

Example: postorder tree traversal

void postorder(node *p) {

if (p->left)

#pragma omp task

postorder(p->left);

if (p->right)

#pragma omp task

postorder(p->right);

#pragma omp taskwait // wait for descendants

process(p->data);

}

 Parent task suspended until children tasks complete

Task scheduling point

90

Task switching

• Certain constructs have task scheduling points at
defined locations within them

• When a thread encounters a task scheduling point, it
is allowed to suspend the current task and execute
another (called task switching)

• It can then return to the original task and resume

2014-08-20

45

91

Task switching example

#pragma omp single

{

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process(item[i]);

}

 Too many tasks generated in an eye-blink

 Generating task will have to suspend for a while

 With task switching, the executing thread can:

execute an already generated task (draining the “task pool”)

dive into the encountered task (could be very cache-
friendly)

92

Thread switching

#pragma omp single

{

#pragma omp task

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process(item[i]);

}

 Eventually, too many tasks are generated

 Generating task is suspended and executing thread switches to a long and
boring task

 Other threads get rid of all already generated tasks, and start starving…

 With thread switching, the generating task can be resumed by a different
thread, and starvation is over

 Too strange to be the default: the programmer is responsible!

untied

2014-08-20

46

93

Data Sharing: tasks (OpenMP 3.0)

•The default for tasks is usually firstprivate, because the task may
not be executed until later (and variables may have gone out of
scope).

•Variables that are shared in all constructs starting from the
innermost enclosing parallel construct are shared, because the
barrier guarantees task completion.

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private

94

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

47

95

OpenMP memory model

 Multiple copies of data may be present in various levels of cache, or
in registers.

 OpenMP supports a shared memory model.

 All threads share an address space, but it can get complicated:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

96

OpenMP and Relaxed
Consistency

• OpenMP supports a relaxed-consistency shared
memory model.

- Threads can maintain a temporary view of shared
memory which is not consistent with that of other
threads.

- These temporary views are made consistent only at
certain points in the program.

- The operation which enforces consistency is called the
flush operation

2014-08-20

48

97

Flush operation

• Defines a sequence point at which a thread is guaranteed to see a
consistent view of memory

- All previous read/writes by this thread have completed and are visible to
other threads

- No subsequent read/writes by this thread have occurred

- A flush operation is analogous to a fence in other shared memory API’s

98

Flush and synchronization

• A flush operation is implied by OpenMP
synchronizations, e.g.

- at entry/exit of parallel regions

- at implicit and explicit barriers

- at entry/exit of critical regions

- whenever a lock is set or unset

….

(but not at entry to worksharing regions or entry/exit of
master regions)

2014-08-20

49

99

Example: producer-consumer
pattern

Thread 0

a = foo();

flag = 1;

Thread 1

while (!flag);

b = a;

 This is incorrect code

 The compiler and/or hardware may re-order the reads/writes to a and
flag, or flag may be held in a register.

 OpenMP has a #pragma omp flush directive which specifies an
explicit flush operation

 can be used to make the above example work

… but it’s use is difficult and prone to subtle bugs

100

OpenMP memory model

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

 A memory model is defined in terms of:

Coherence: Behavior of the memory system when a single address is
accessed by multiple threads.

Consistency: Orderings of reads, writes, or synchronizations (RWS)
with various addresses and by multiple threads.

 OpenMP supports a shared memory model.

 All threads share an address space, but it can get complicated:

2014-08-20

50

101

Source code

Program order

memory

a b
Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . .

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . .

RW’s in any

semantically

equivalent order

102

Consistency: Memory Access Re-
ordering

•Re-ordering:

- Compiler re-orders program order to the code order

- Machine re-orders code order to the memory commit order

•At a given point in time, the “private view” seen by a
thread may be different from the view in shared
memory.

•Consistency Models define constraints on the orders of
Reads (R), Writes (W) and Synchronizations (S)

- … i.e. how do the values “seen” by a thread change as you
change how ops follow (→) other ops.

- Possibilities include:

• R→R, W→W, R→W, R→S, S→S, W→S

2014-08-20

51

103

Consistency

• Sequential Consistency:

- In a multi-processor, ops (R, W, S) are sequentially
consistent if:

• They remain in program order for each processor.

• They are seen to be in the same overall order by each of the
other processors.

- Program order = code order = commit order

• Relaxed consistency:

- Remove some of the ordering constraints for memory ops
(R, W, S).

104

OpenMP and Relaxed
Consistency

• OpenMP defines consistency as a variant of weak
consistency:

- S ops must be in sequential order across threads.

- Can not reorder S ops with R or W ops on the same
thread

• Weak consistency guarantees

S→W, S→R , R→S, W→S, S→S

• The Synchronization operation relevant to this
discussion is flush.

2014-08-20

52

105

Flush

•Defines a sequence point at which a thread is
guaranteed to see a consistent view of memory with
respect to the “flush set”.

•The flush set is:

- “all thread visible variables” for a flush construct without an
argument list.

- a list of variables when the “flush(list)” construct is used.

•The action of Flush is to guarantee that:

• All R,W ops that overlap the flush set and occur prior to the
flush complete before the flush executes

• All R,W ops that overlap the flush set and occur after the
flush don’t execute until after the flush.

• Flushes with overlapping flush sets can not be reordered.
Memory ops: R = Read, W = write, S = synchronization

106

Synchronization: flush example

 Flush forces data to be updated in memory so other threads see
the most recent value

double A;

A = compute();

flush(A); // flush to memory to make sure other

// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared

memory API’s.

2014-08-20

53

107

What is the Big Deal with
Flush?

•Compilers routinely reorder instructions implementing
a program
- This helps better exploit the functional units, keep machine

busy, hide memory latencies, etc.

•Compiler generally cannot move instructions:
- past a barrier

- past a flush on all variables

•But it can move them past a flush with a list of
variables so long as those variables are not accessed

•Keeping track of consistency when flushes are used
can be confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different

threads. It just ensures that a thread’s values are made consistent

with main memory.

108

Exercise 10: producer consumer

• Parallelize the “prod_cons.c” program.

• This is a well known pattern called the producer
consumer pattern

- One thread produces values that another thread
consumes.

- Often used with a stream of produced values to
implement “pipeline parallelism”

• The key is to implement pairwise synchronization
between threads.

2014-08-20

54

109

Exercise 10: prod_cons.c

int main()
{

double *A, sum, runtime; int flag = 0;

A = (double *)malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf seconds, The sum is %lf \n",runtime,sum);
}

110

Pair wise synchronization in
OpenMP

• OpenMP lacks synchronization constructs that work
between pairs of threads.

• When this is needed you have to build it yourself.

• Pair wise synchronization

- Use a shared flag variable

- Reader spins waiting for the new flag value

- Use flushes to force updates to and from memory

2014-08-20

55

111

Exercise 10: producer consumer
int main()
{

double *A, sum, runtime; int numthreads, flag
= 0;
A = (double *)malloc(N*sizeof(double));

#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag != 1){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the

“produced” value is ready

Flush forces refresh to memory.

Guarantees that the other thread

sees the new value of A

Notice you must put the flush inside the while

loop to make sure the updated flag variable is

seen

Flush needed on both “reader” and “writer”

sides of the communication

112

Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment

• OpenMP Tasks

• Memory model

• Threadprivate Data

• OpenMP 4.0 and Accelerators

2014-08-20

56

113

Data sharing: Threadprivate

•Makes global data private to a thread
- Fortran: COMMON blocks

- C: File scope and static variables, static class members

•Different from making them PRIVATE

- with PRIVATE global variables are masked.

- THREADPRIVATE preserves global scope within each
thread

•Threadprivate variables can be initialized using
COPYIN or at time of definition (using language-
defined initialization capabilities).

114

A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each
thread.

2014-08-20

57

115

Data Copying: Copyin

#define N 1000

int A[N];

#pragma omp threadprivate(A)

/* Initialize the A array */

init_data(N,A);

#pragma omp parallel copyin(A)

{

… Now each thread sees threadprivate array A initialied

… to the global value set in the subroutine init_data()

}

You initialize threadprivate data using a
copyin clause.

116

Data Copying: Copyprivate

#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters

void do_work(int, int);

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

input_parameters (Nsize, choice);

do_work(Nsize, choice);

}

}

Used with a single region to broadcast values of privates
from one member of a team to the rest of the team.

2014-08-20

58

117

Conclusion

• We have now covered the full sweep of the OpenMP
specification (up to OpenMP 3.0)
- We’ve left off some minor details, but we’ve covered all

the major topics … remaining content you can pick up on
your own.

• Download the spec to learn more … the spec is filled
with examples to support your continuing education.
- www.openmp.org

• Get involved:
- Get your organization to join the OpenMP ARB.

- Work with us through Compunity.

