BIPOLAR REGION FORMATION IN STRATIFIED TWO-LAYER TURBULENCE

WARNECKE ET AL 2013 & 2015

JÖRN WARNECKE

MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH

TOGETHER WITH: Illa R. Losada, Axel Brandenburg Nathan Kleeorin, Igor Rogachevskii

11th of March 2015

11th of March 2015

11th of March 2015

Negative Effective Magnetic Pressure Instability NEMPI B²

Pressure:
$$P_{tot} = P_{gas} + \frac{B^2}{2\mu}$$

11th of March 2015

Negative Effective Magnetic Pressure Instability
NEMPIPressure: $P_{tot} = P_{gas} + \frac{B^2}{2\mu}$ $\overline{P}_{tot} = \overline{P}_{gas} + \frac{\overline{B}^2}{2\mu} + \overline{P}_{turb}$

Mean field approach: $U = \overline{U} + u$

Negative Effective Magnetic Pressure Instability
NEMPIPressure: $P_{tot} = P_{gas} + \frac{B^2}{2\mu}$ $\overline{P}_{tot} = \overline{P}_{gas} + \frac{\overline{B}^2}{2\mu} + \overline{P}_{turb}$

Mean field approach:

Turbulent pressure:

$$U = \overline{U} + u$$

$$\overline{\Pi}_{ij}^B = \overline{\rho u_i u_j} + \frac{\overline{b^2}}{2} \delta_{ij} - \overline{b_i b_j}$$

Negative Effective Magnetic Pressure Instability ΗΜΡΙ $P_{tot} = P_{gas} + \frac{B^2}{2\mu} \qquad \overline{P}_{tot} = \overline{P}_{gas} + \frac{\overline{B}^2}{2\mu} + \overline{P}_{turb}$ **Pressure:** Mean field approach: U = U + u**Turbulent pressure:** $\overline{\Pi}_{ij}^B = \overline{\rho u_i u_j} + \frac{b^2}{2} \delta_{ij} - \overline{b_i b_j}$ **Effective magnetic pressure:** $\overline{P}_{ij}^{M} = \frac{\overline{B}^{2}}{2} \delta_{ij} - \overline{B}_{i} \overline{B}_{j} + \overline{\Pi}_{ij}^{B} - \overline{\Pi}_{ij}^{0}$

Negative Effective Magnetic Pressure Instability
NEMPIPressure: $P_{tot} = P_{gas} + \frac{B^2}{2\mu}$ $\overline{P}_{tot} = \overline{P}_{gas} + \frac{\overline{B}^2}{2\mu} + \overline{P}_{turb}$ Mean field approach: $U = \overline{U} + u$ Turbulent pressure: $\overline{\Pi}_{ij}^B = \overline{\rho u_i u_j} + \frac{\overline{b^2}}{2} \delta_{ij} - \overline{b_i b_j}$

Effective magnetic pressure: $\overline{P}_{ij}^{M} = \frac{\overline{B}^{2}}{2} \delta_{ij} - \overline{B}_{i} \overline{B}_{j} + \overline{\Pi}_{ij}^{B} - \overline{\Pi}_{ij}^{0}$

Kleeorin et al. 1989, 1990 Brandenburg et al., 2011, 2012, 2013 Kemel et al. 2012a,b, 2013a,b

Cartesian Setup

11th of March 2015

Cartesian Setup

$$\frac{D\ln\rho}{Dt} = -\nabla \cdot U$$

$$\frac{DU}{Dt} = g + \theta_w(z)f + \frac{1}{\rho}[-c_s^2\nabla\rho + J \times B + \nabla \cdot (2\nu\rho S)]$$

11th of March 2015

Cartesian Setup

11th of March 2015

Results

Results

Results

 $\tau_{td}=3k_f/(urms k_1^2)$

Stratification

11th of March 2015

magnetic Prandtl number

magnetic Prandtl number

-0.005

-0.010

-0.020

-0.025

0.030

-0.015 &

Imposed magnetic field

11th of March 2015

Horizontal extent

11th of March 2015

Horizontal extent

11th of March 2015

Emergence from the lower layer to the surface

11th of March 2015

Relation to down flows

the surface

11th of March 2015

11th of Marc

Conclusions

- Generation and decay of bipolar region.
- Super equipartition field strengths.
- NEMPI is most likely responsible.
- Density stratification important.
- Magnetic Prandtl number 0.25-0.5.
- Imposed field should be not too small, and not too large
- Larger horizontal domain helps, same size of poles
- Vertical field rise from lower domain to the surface.
- Correlation with down flows.
- Dynamo generated bipolar regions.