Global solar dynamo simulations with and without tachocline. The quest for the dynamo location **Gustavo Guerrero** (guerrero@fisica.ufmg.br) **Physics Department** Universidade Federal de Minas Gerais Brazil

P. Smolarkiewicz (ECMWF) – A. Kosovichev (BBSO), Elisabete M. de G. Dal Pino (IAG-USP) – N. Mansour (NASA Ames) G. GUERRERO, NORDITA, MARCH 2015 SUNSPOTS, OBSERVATIONS, THEORY AND SIMULATIONS

Large-scale motions in the solar interior Differential Rotation

Large-scale motions in the solar interior Meridional Circulation

Large-scale magnetic fields

Hathaway/NASA/MSFC 2014/02

Solar Cycle 24

Most of the dynamobased predictions have failed to reproduce the sunspot number and overall solar activity. **The physics in the models is not complete.**

ILUKI AND SIMULATIONS

Anelastic simulations with the **EULAG** code

Anelastic approximation (Lipps & Helmer 1982, Lipps 1990)

(Guizaru+ 2010, Racine+ 2011, Smolarkiewicz & Charbonneau 2013, Cossette+ 2013, Guerrero+ 2013, Guerrero+ 2015)

HD

Differential rotation in **solar-like** stars

Guerrero+ (2013)

a) $T = 112 d (\Omega_0 = \Omega \odot / 4)$

c) $T = 28d (\Omega_0 = \Omega \odot)$

b) $T = 56d (\Omega_0 = \Omega \odot / 2)$

d) $T = 14d (\Omega_0 = 2\Omega \odot)$

SUNSPOTS,

The differential rotation profile is defined by the delicate balance between **buoyancy** and **Coriolis** forces defined by the **Rossby** number (Ro). **Solar-like** (fast equator) and **anti-solar** modes (faster poles) are obtained. The transition between the two regimes is sharp.

MHD

Dynamo (Guerrero+ 2015, *in preparation*)

Table 1: Simulation parameters and outputs. The quantities in the table are defined as follows: Ra^{*} = $\frac{1}{c_p\Omega_0^2}g\frac{\partial s_e}{\partial r}$, $u_{\rm rms}$ is the volume average rms velocity (in m/s) in the unstable layer, Ma = $u_{\rm rms}/c_{\rm s}^*$ is the Mach number, with $c_{\rm s}^* = \sqrt{\gamma R T_s^*} |_{r=0.85R_{\odot}}$ being the sound speed at the middle of the unstable layer, Ro = $\frac{u_{\rm rms}}{2\Omega_0 L}$ and $\chi_{\Omega} = (\Omega_{\rm eq} - \Omega_{\rm p})/\Omega_0$, where $\Omega_{\rm eq} = \overline{\Omega}(R_{\odot}, 90^\circ)$, $\Omega_{\rm p} = \overline{\Omega}(R_{\odot}, 30^\circ)$ and Ω_0 is the frame rotation rate. The growth rate of the magnetic field, λ , is given in yr⁻¹. The kinetic and magnetic energy densities, in Jm⁻³ are: $e_{\rm K} = \overline{\rho}_s \overline{u}^2/2$, $e_{\rm M} = \overline{B}^2/2\mu_0$, $e_{\phi} = \overline{B}_{\phi}^2/2\mu_0$ and $e_{p} = (\overline{B}_r^2 + \overline{B}_{\theta}^2)/2\mu_0$. Finally, the full cycle period, $T_{\rm M}$, is expressed in years. Models starting with the letter CZ consider the convection zone only, models starting with RC include both, radiative and convective zones. The resolution considered is $N_{\phi} = 128$, $N_{\theta} = 64$ and $N_r = 47$ for CZ models, and $N_r = 64$ for RC models.

Model	Ro	Ra^*	$u_{ m rms}$	$Ma(10^{-4})$	χ_{Ω}	λ	$e_{ m M}/e_{ m K}$	$e_{\phi}/e_{ m K}$	$e_{oldsymbol{p}}/e_{\mathrm{K}}$	$T_{\mathbf{M}}$
CZ01	0.030	1.29	55.12	3.85	0.09	2.26	0.098	0.080	0.018	2.26
CZ02	0.067	5.16	60.91	4.25	0.17	0.65	0.010	0.009	0.001	2.21
CZ03	0.150	20.65	67.18	4.69	0.18	0.56	2e-4	2e-4	1e-5	55 02
RC01	0.033	1.36	60.80	4.10	0.07	0.84	0.249	0.042	0.206	
RC02	0.069	5.45	62.27	4.30	0.05	0.85	0.247	0.218	0.028	30.90
RC03	0.161	21.80	72.88	5.04	0.28	0.06	0.001	0.001	4e-6	68.38

Models without tachocline

Models with tachocline

Models without tachocline Butterfly diagram at $r=0.95R_{\odot}$

Models with tachocline Butterfly diagram at $r=0.95R_{\odot}$

HD progenitors

MHD result

No ∂S/∂θ imposed nor required

MULATIONS

Model without tachocline

Model CZ02

T=2.1 yr

Source terms

Model with tachocline

Model RC02 T=30.9 yr

Source terms

Cycle period

According with MLT estimations, a dynamo in the CZ should be in the diffusion dominated regime (half-cycle period 2-8 yr), η -quenching does not help much with the cycle period (Rudiger+ 94, Tobias 96, Gilman & Rempel 05, Guerrero+ 09, Muñoz+11).

G. GUERRERO, NORDITA, MARCH 2015

SUNSPOTS, OBSERVATIONS, THEORY AND SIMULATIONS

CONCLUSIONS

•LES & ILES are promising tools to explore turbulent problems. EULAG code is a powerful code to study solar/stellar rotation and dynamo

- Due to the highly sub-adiabatic stable region, all the simulations exhibit the formation of a *tachocline*. Besides, by choosing the appropriate stratification, a *near-surface shear layer* is obtained.
- For all the simulations at the solar rotation rate the meridional flow is multicellular. The simulations that reproduce the NSSL develop a poleward meridional flow at the surface and higher latitudes.
- Dynamo models *without tachocline* result in oscillatory solutions with short cycle period (~2yr). Dynamo models *including a tachocline* result in oscillatory solutions with long cycle period (>30yr). The strongest field developed in this radial shear layers dominates the evolution of the global field.

Thanks