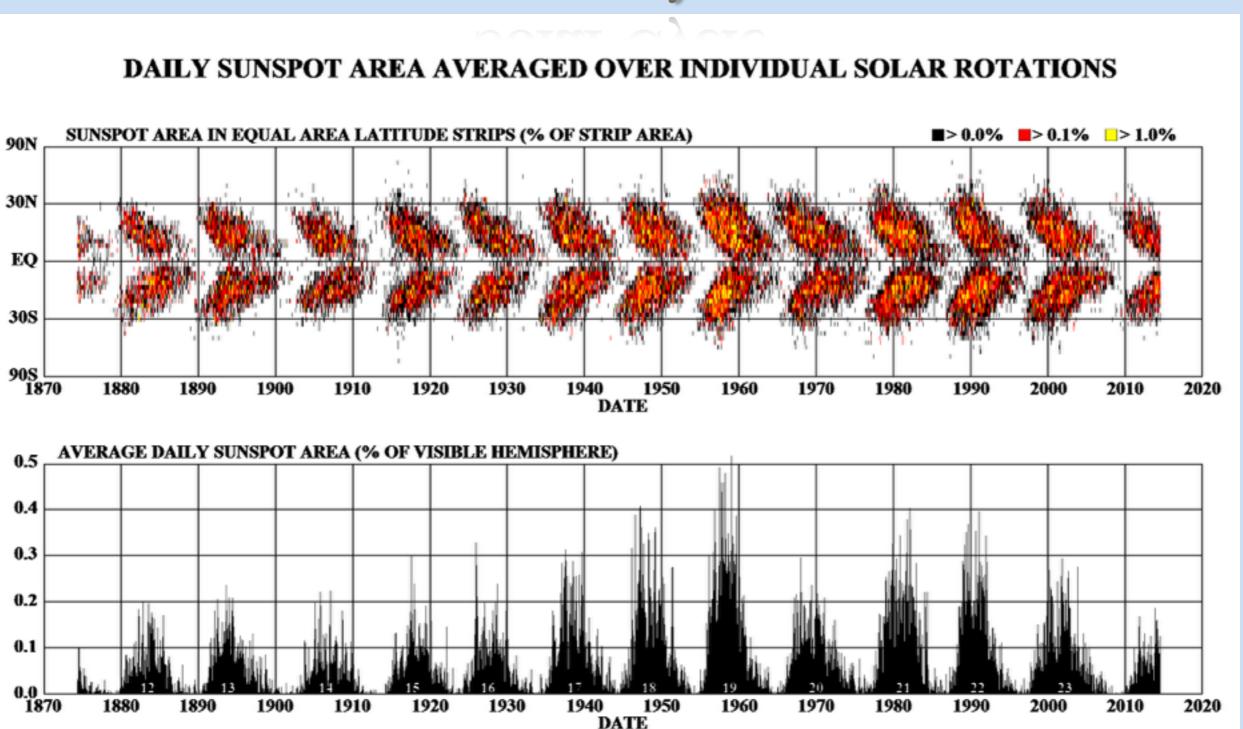
THE UNDERSTANDING THE EQUATORWARD MIGRATION OF THE SUN'S MAGNETIC FIELD

JÖRN WARNECKE

MAX PLANCK INSTITUTE
FOR SOLAR SYSTEM RESEARCH

AXEL BRANDENBURG, NORDITA
PETRI J. KÄPYLÄ, HELSINKI UNIVERSITY
MAARIT J. KÄPYLÄ, AALTO UNIVERSITY

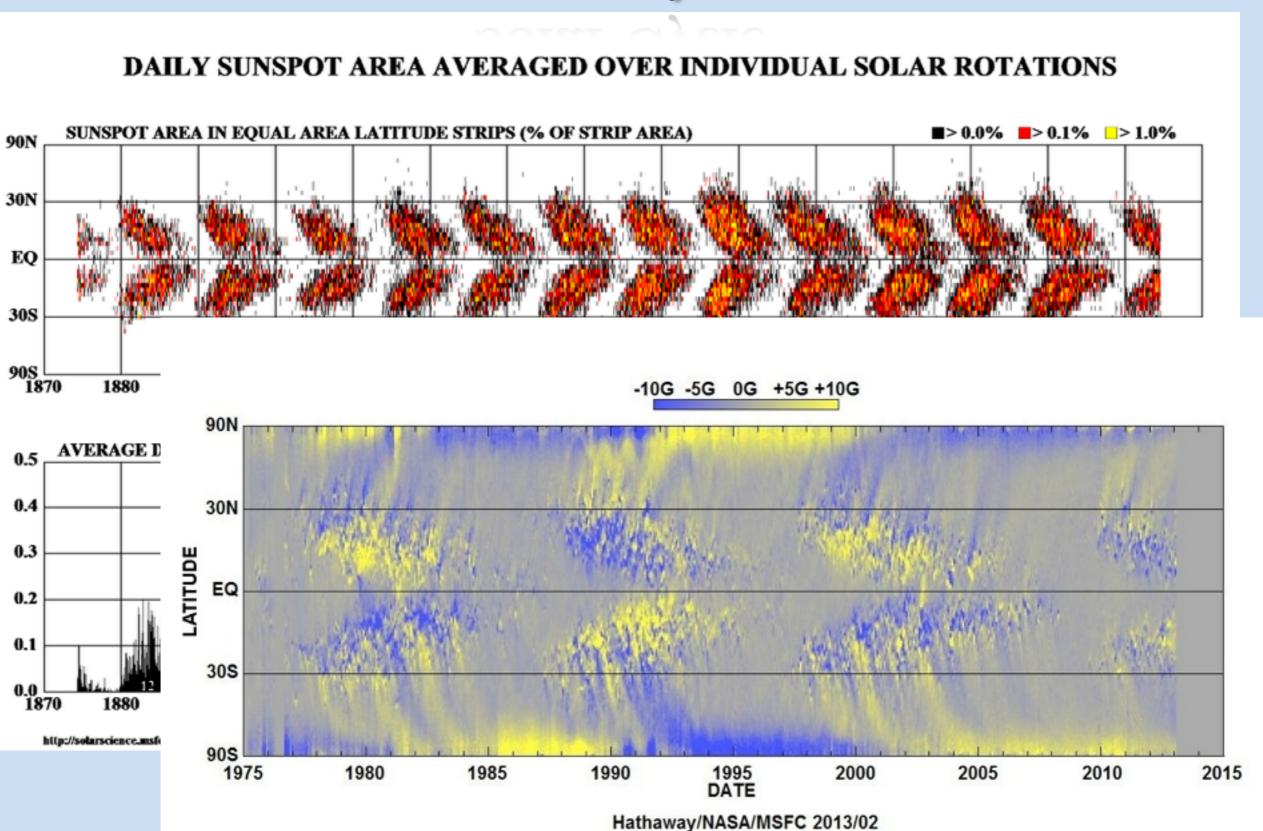
Solar Cycle



http://solarscience.msfc.nasa.gov/

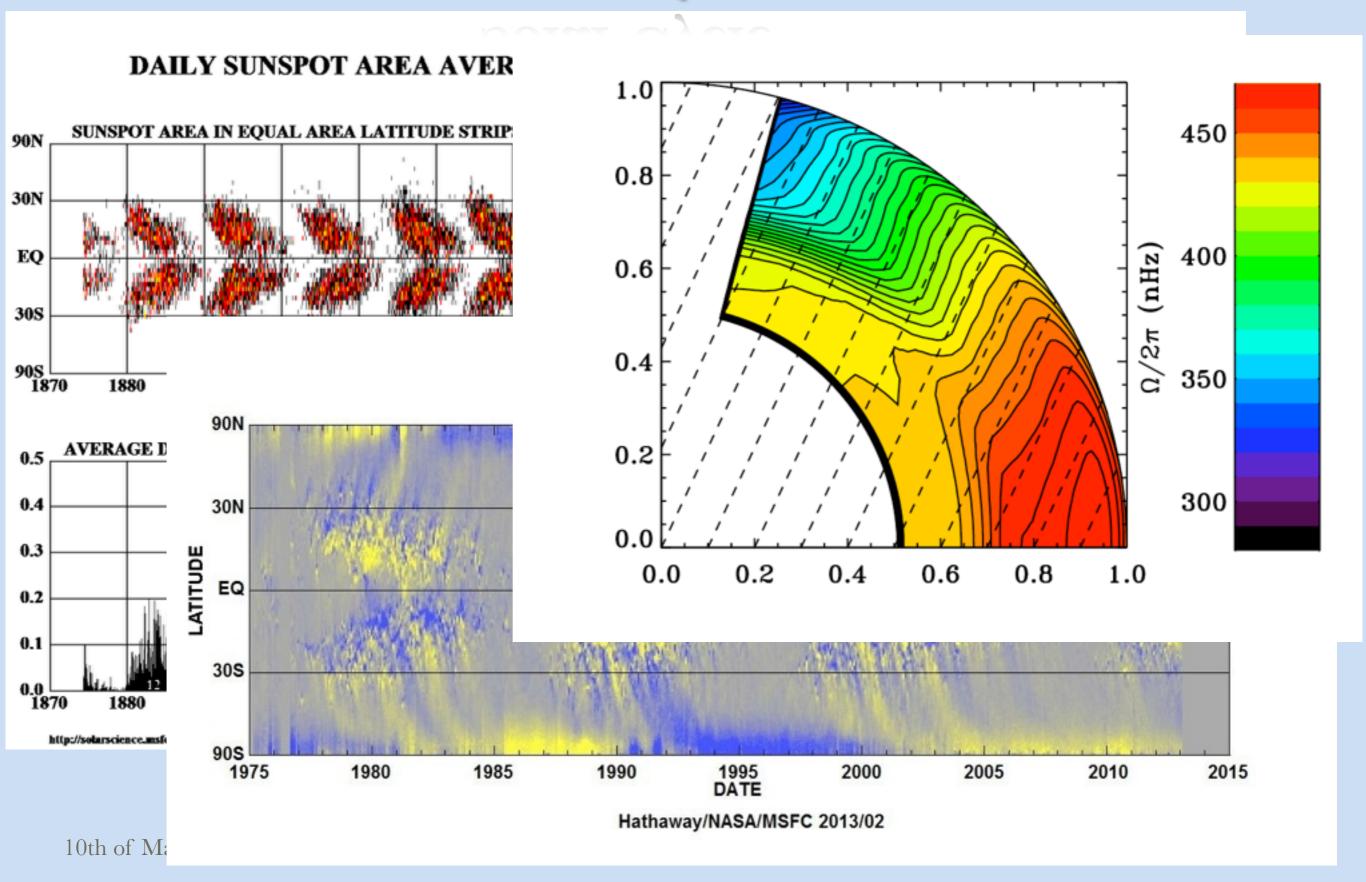
HATHAWAY/NASA/ARC 2014/08

Solar Cycle



10th of Ma

Solar Cycle



Global convective dynamo simulations

$$\begin{split} \frac{\partial A}{\partial t} &= u \times B + \eta \nabla^2 A \\ \frac{D \ln \rho}{D t} &= -\nabla \cdot u \\ \frac{D u}{D t} &= g - 2\Omega_0 \times u + \frac{1}{\rho} \left(J \times B - \nabla p + \nabla \cdot 2\nu \rho S \right) \\ T \frac{D s}{D t} &= \frac{1}{\rho} \nabla \cdot (K \nabla T + \chi_t \rho T \nabla s) + 2\nu S^2 + \frac{\mu_0 \eta}{\rho} J^2 - \Gamma_{\text{cool}}(r), \end{split}$$

http://pencil-code.google.com/

Global convective dynamo simulations

$$\frac{\partial A}{\partial t} = u \times B + \eta \nabla^2 A$$

$$\frac{D\ln\rho}{Dt} = -\nabla \cdot u$$

$$\frac{Du}{Dt} = g - 2\Omega_0 \times u + \frac{1}{\rho} \left(J \times B - \nabla p + \nabla \cdot 2\nu \rho S \right)$$

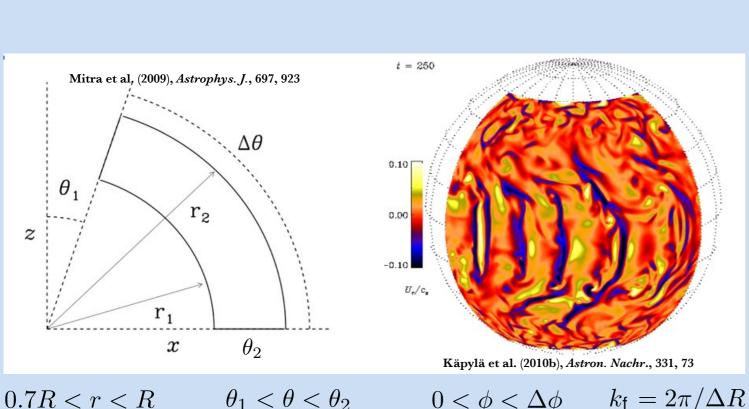
$$T\frac{Ds}{Dt} = \frac{1}{\rho}\nabla \cdot (K\nabla T + \chi_t \rho T \nabla s) + 2\nu S^2 + \frac{\mu_0 \eta}{\rho} J^2 - \Gamma_{\text{cool}}(r),$$

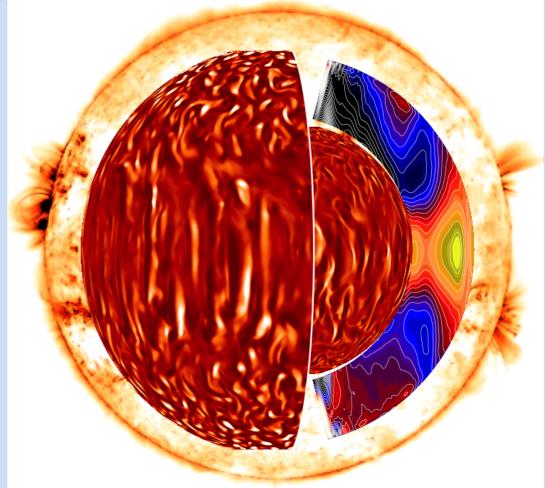


- high-order finite-difference code
- scales up efficiently to over 60.000 cores
- compressible MHD

http://pencil-code.google.com/

Global convective dynamo simulations





$$\theta_1 < \theta < \theta_2$$

$$0 < \phi < \Delta \phi \qquad k_{\rm f} = 2\pi/\Delta R$$

$$\theta_2$$

$$\theta_1 < \theta < \theta_2$$

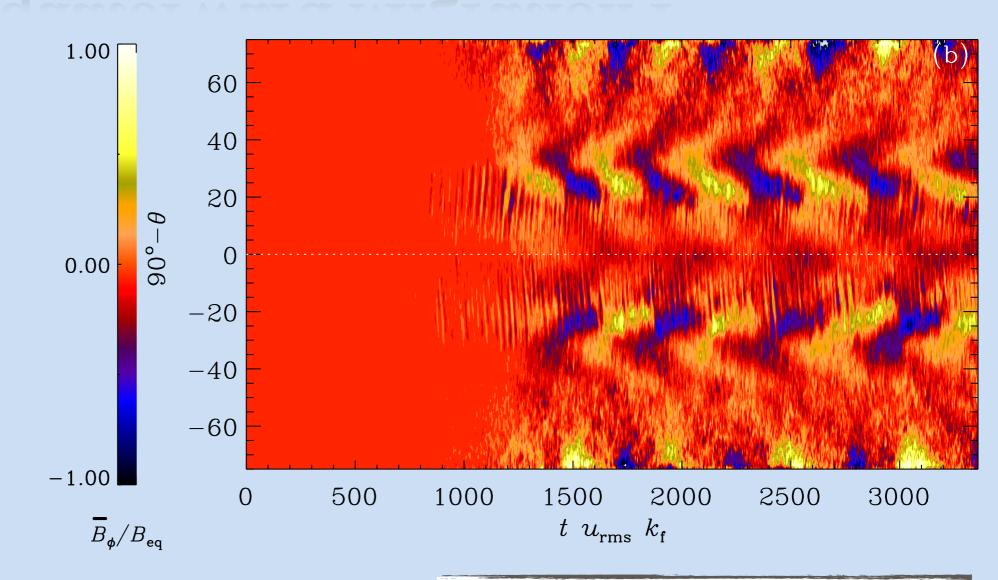
$$0 < \phi < \Delta \phi$$

$$\theta_1 < \theta < \theta_2$$
 $0 < \phi < \Delta \phi$ $k_{\rm f} = 2\pi/\Delta R$

We model a spherical sector ('wedge') where only parts of the latitudinal and longitudinal extents are taken into account.

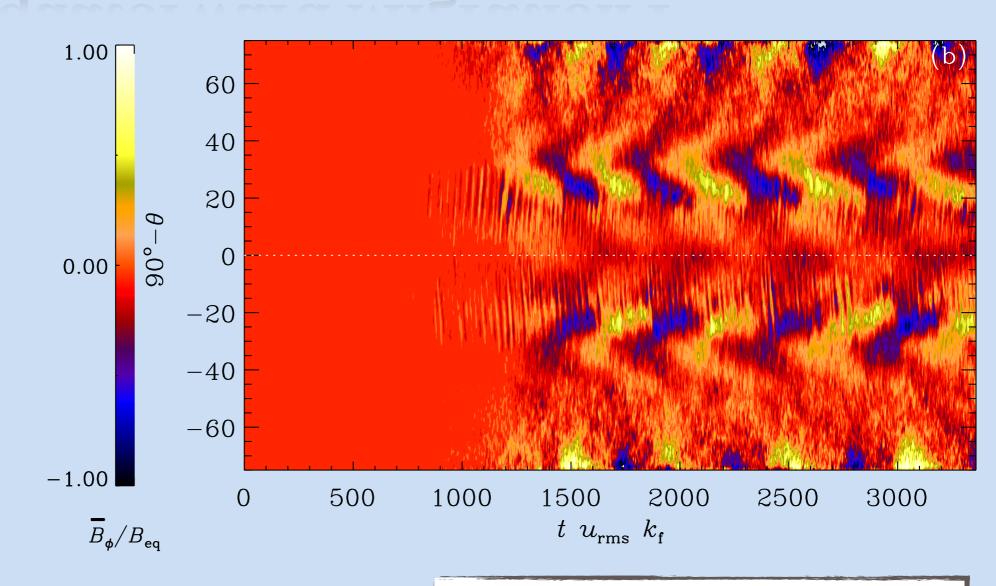
Normal field condition for B at the outer radial boundary and perfect conductor at all other boundaries. Impenetrable stress-free boundaries on all boundaries.

Equatorward Migration I



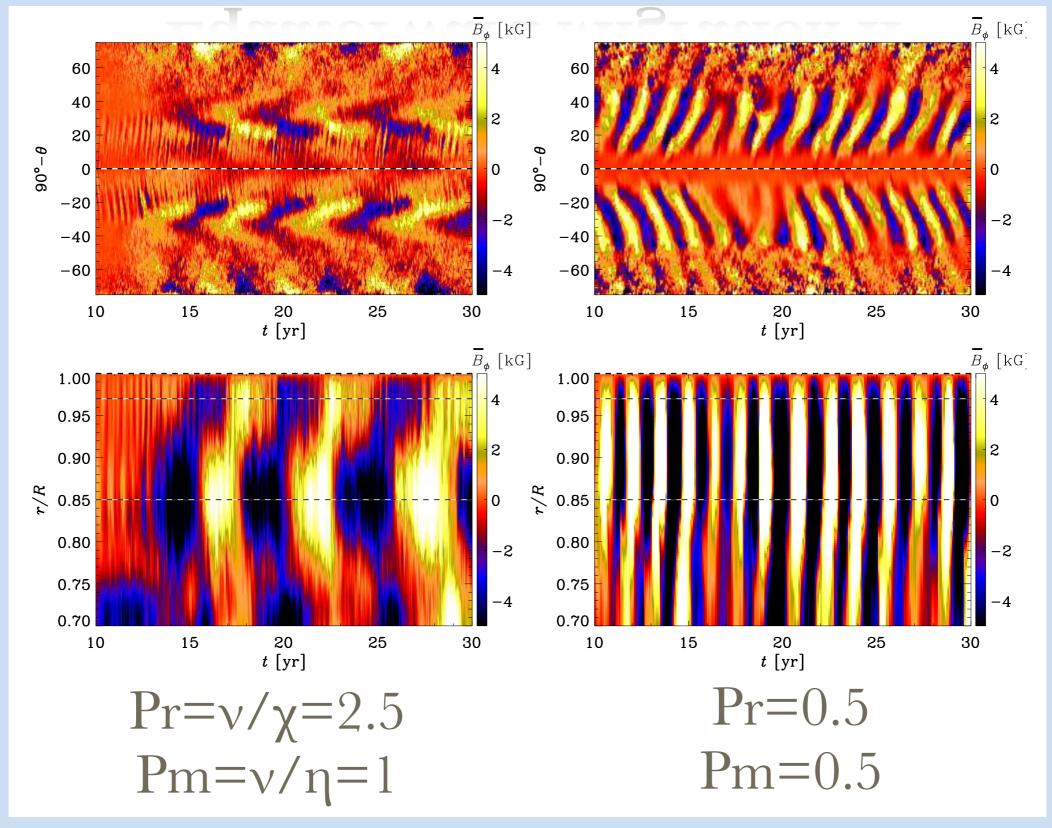
Käpylä, Mantere & Brandenburg 2012 (ApJL 755, L22)

Equatorward Migration I

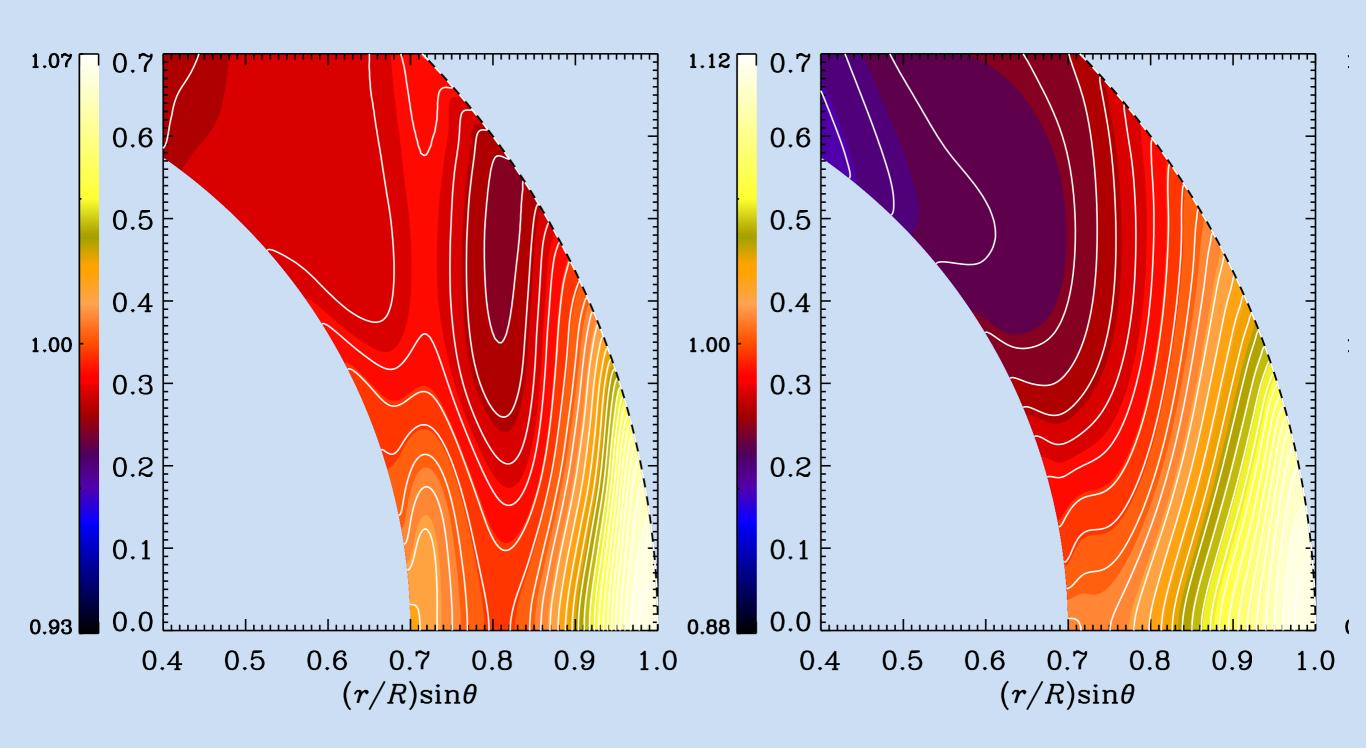


Käpylä, Mantere & Brandenburg 2012 (ApJL 755, L22)

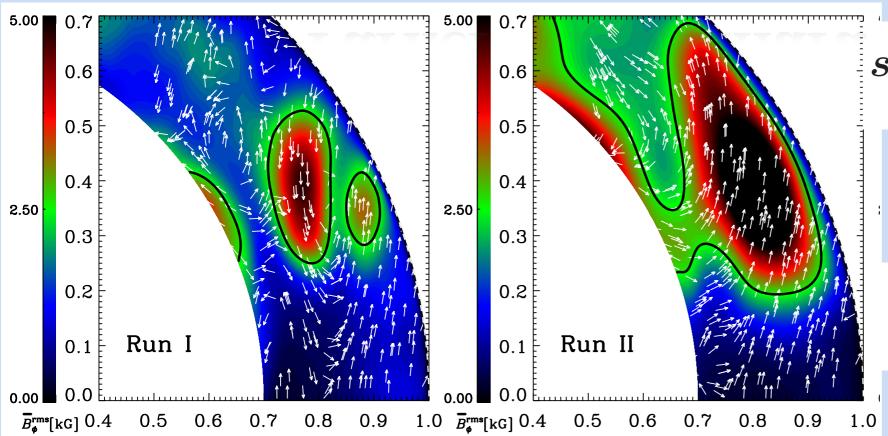
Equatorward Migration II



Differential rotation



Parker—Yoshimura—Rule

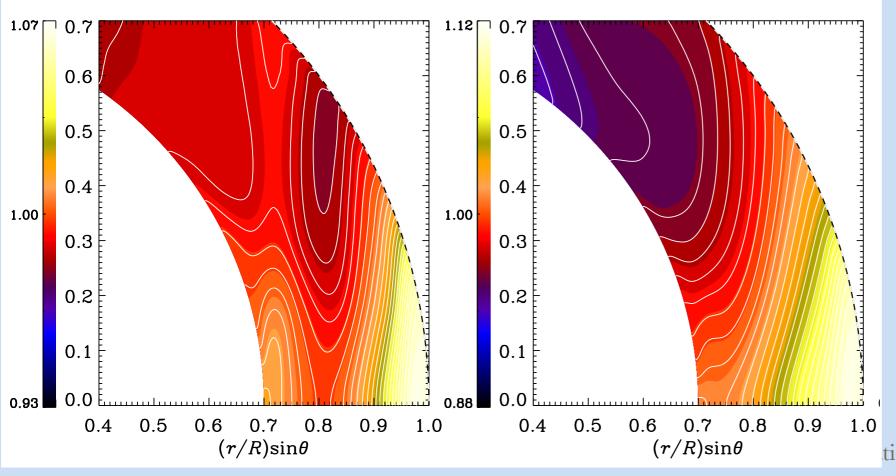


$$s_{\text{mig}}(r,\theta) = -\alpha \hat{\boldsymbol{e}}_{\phi} \times \boldsymbol{\nabla}\Omega,$$

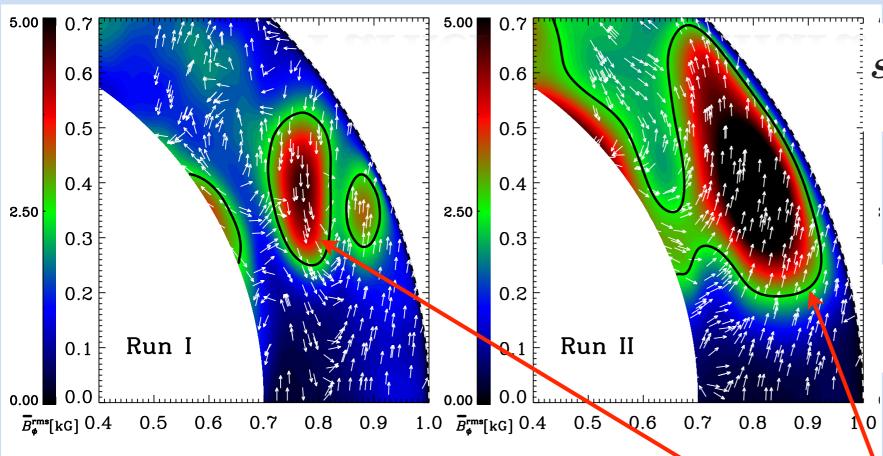
Parker 1955 Yoshimura 1975

$$\alpha = \frac{\tau_{\rm c}}{3} \left(-\overline{\boldsymbol{\omega} \cdot \boldsymbol{u}} + \frac{\overline{\boldsymbol{j} \cdot \boldsymbol{b}}}{\overline{\rho}} \right)$$

Pouquet et al. 1976



Parker—Yoshimura—Rule

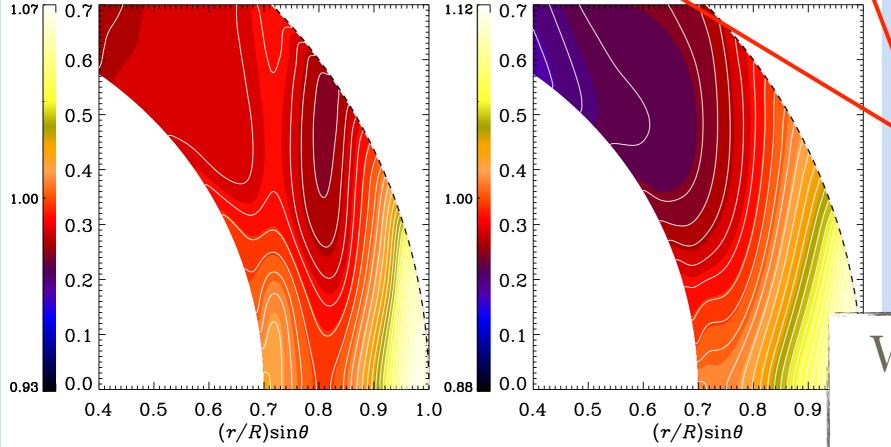


$$s_{\text{mig}}(r,\theta) = -\alpha \hat{\boldsymbol{e}}_{\phi} \times \boldsymbol{\nabla}\Omega,$$

Parker 1955 Yoshimura 1975

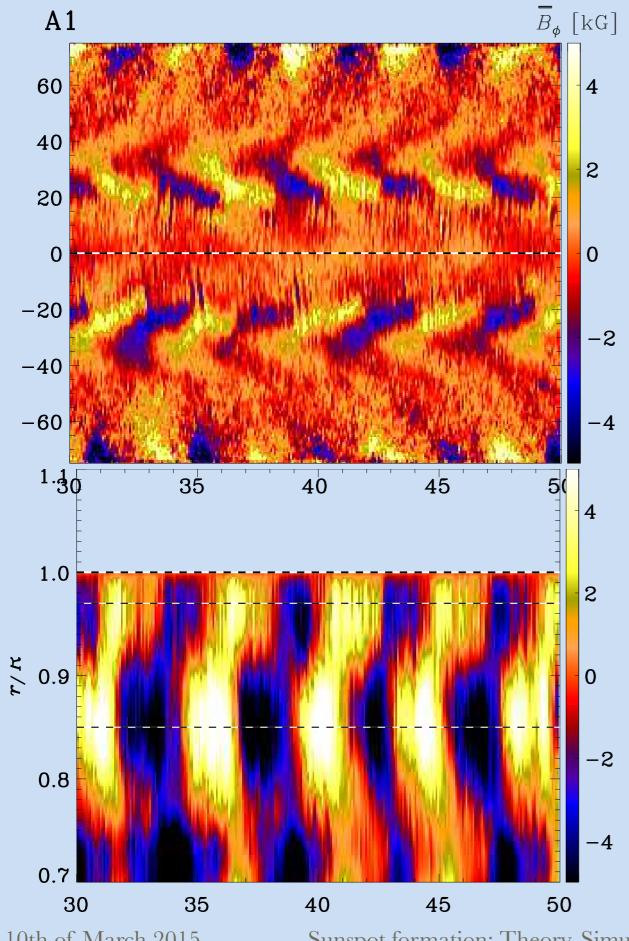
$$\alpha = \frac{\tau_{\rm c}}{3} \left(-\overline{\boldsymbol{\omega} \cdot \boldsymbol{u}} + \frac{\overline{\boldsymbol{j} \cdot \boldsymbol{b}}}{\overline{\rho}} \right)$$

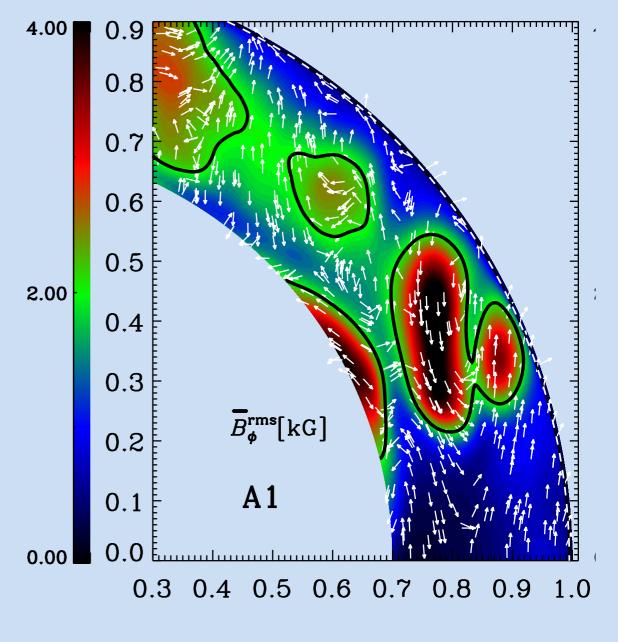
Pouquet et al. 1976



Strong toroidal field

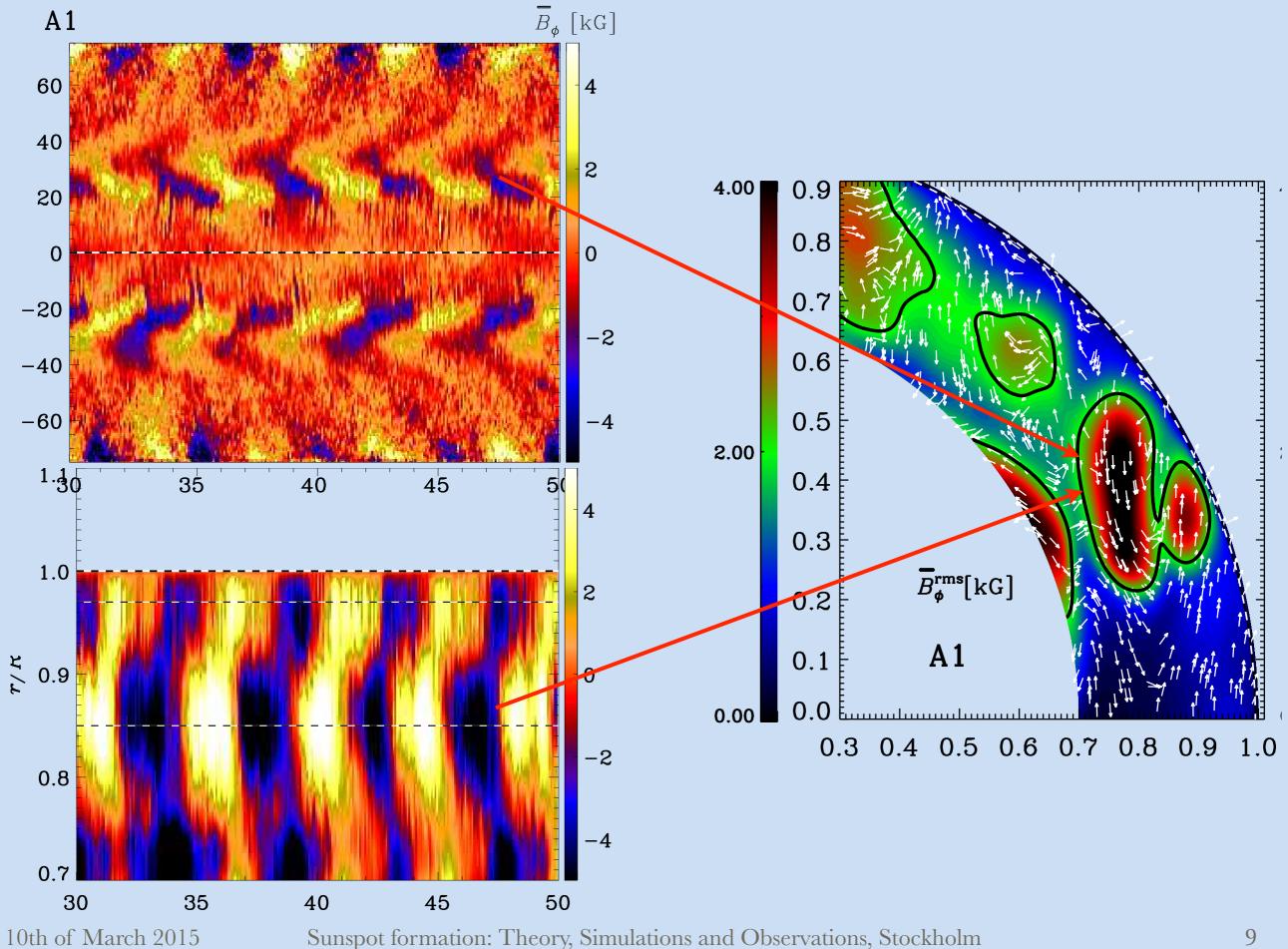
Warnecke et al. 2014 (ApJL 796, L12)



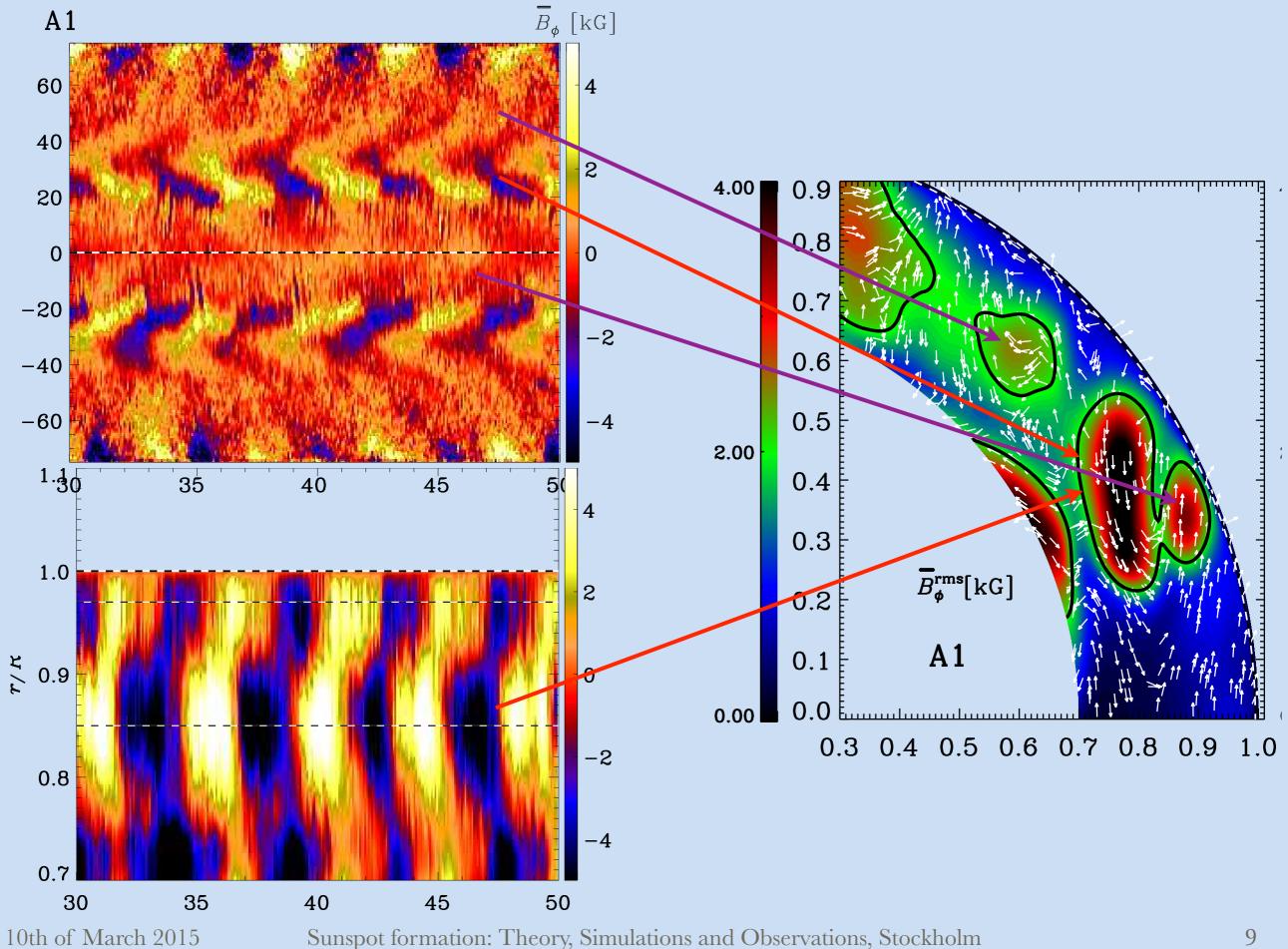


10th of March 2015

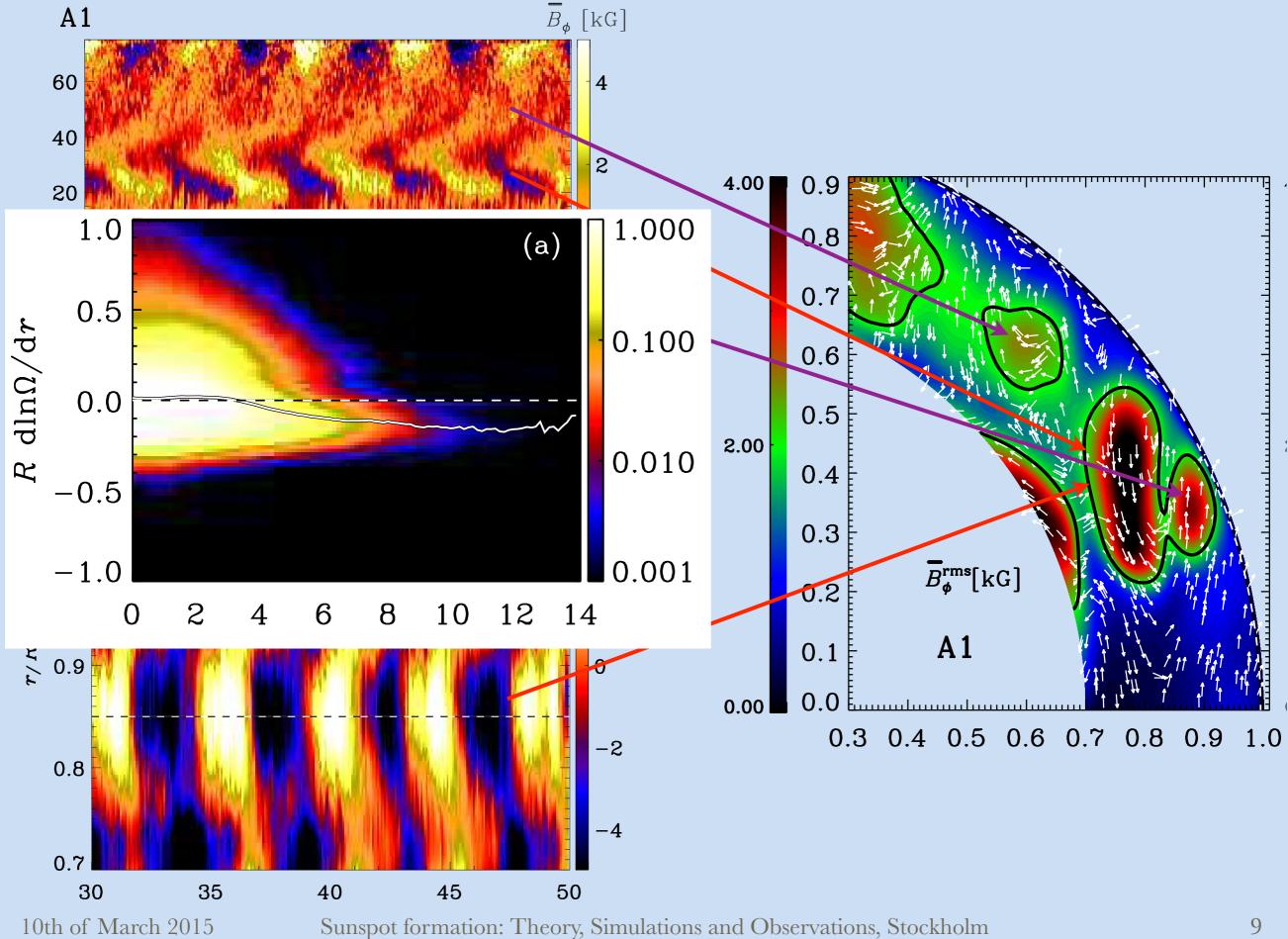
Sunspot formation: Theory, Simulations and Observations, Stockholm

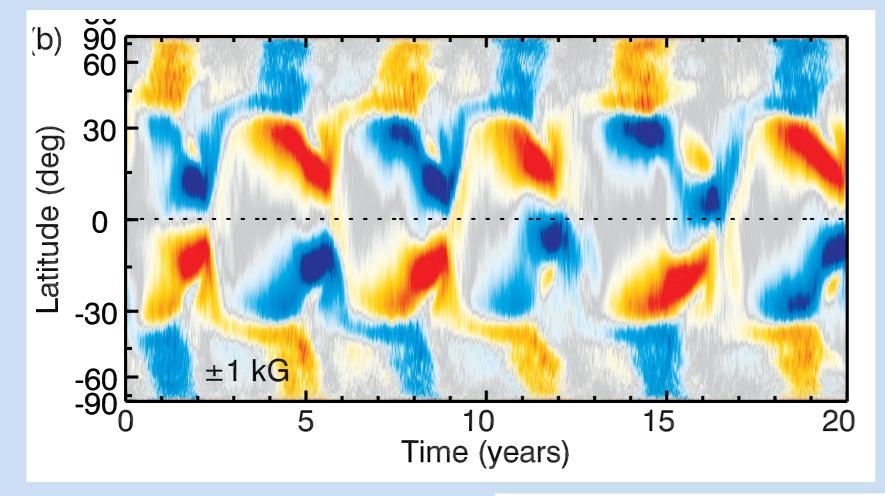


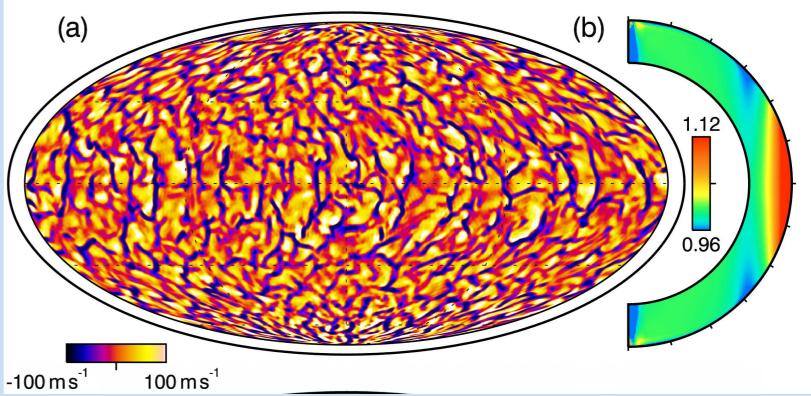
Sunspot formation: Theory, Simulations and Observations, Stockholm

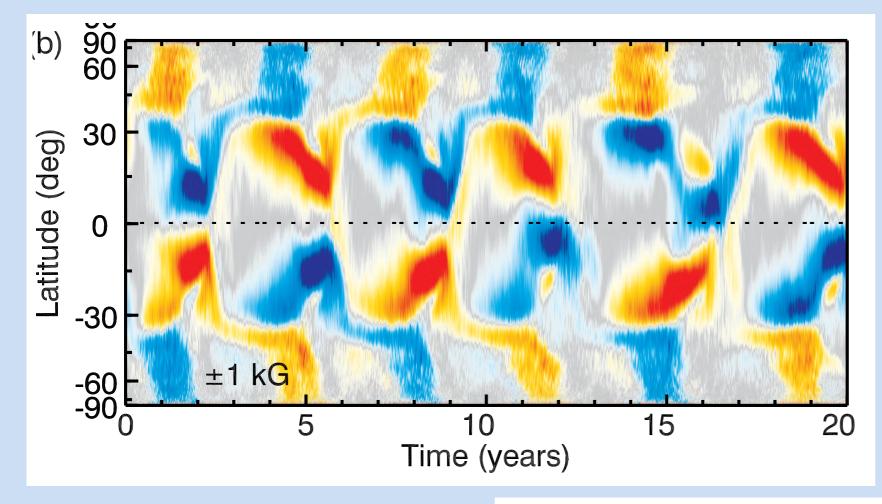


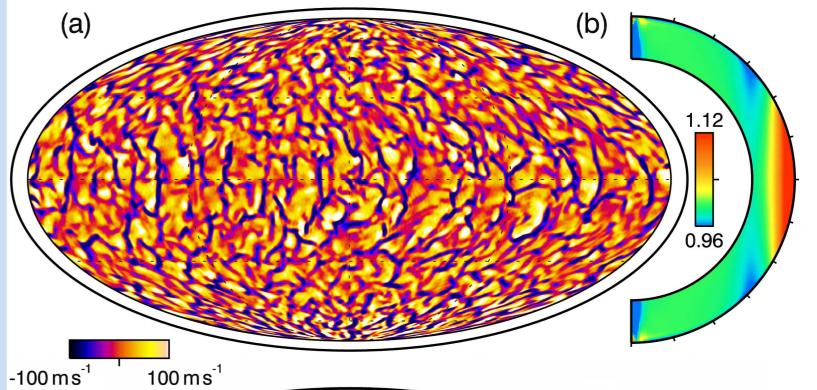
Sunspot formation: Theory, Simulations and Observations, Stockholm



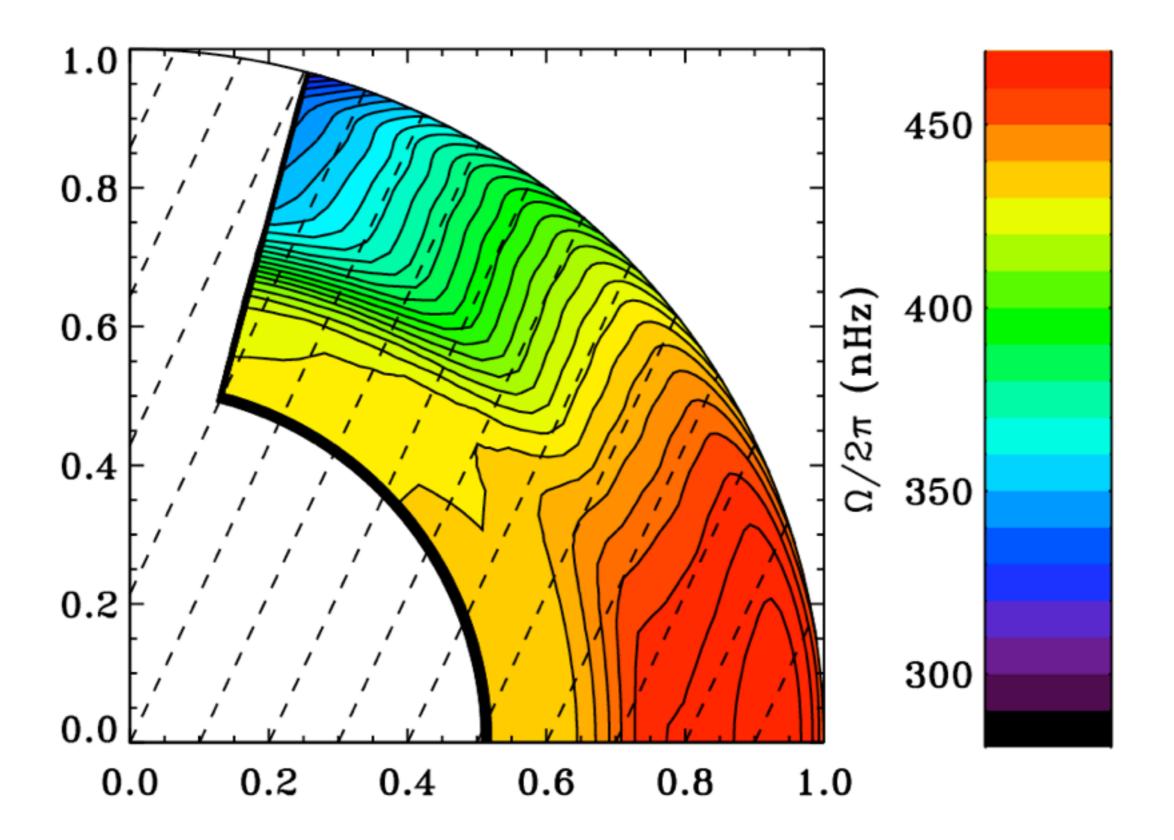




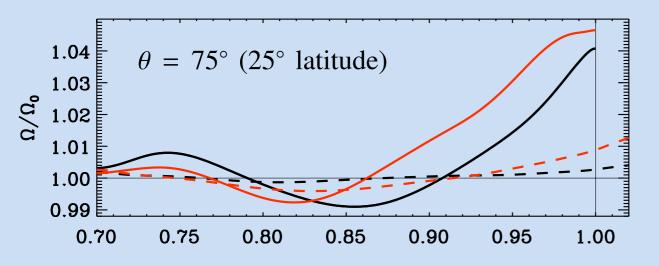


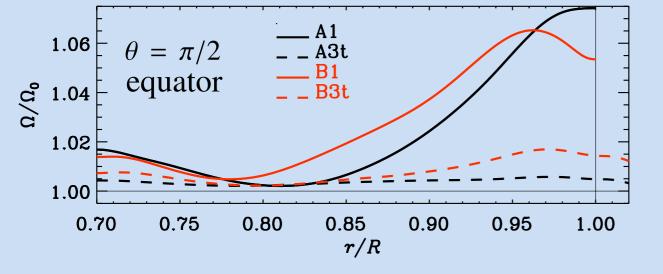


Propagation direction of mean toroidal magnetic field can be entirely explain by the Parker—Yoshimura—Rule

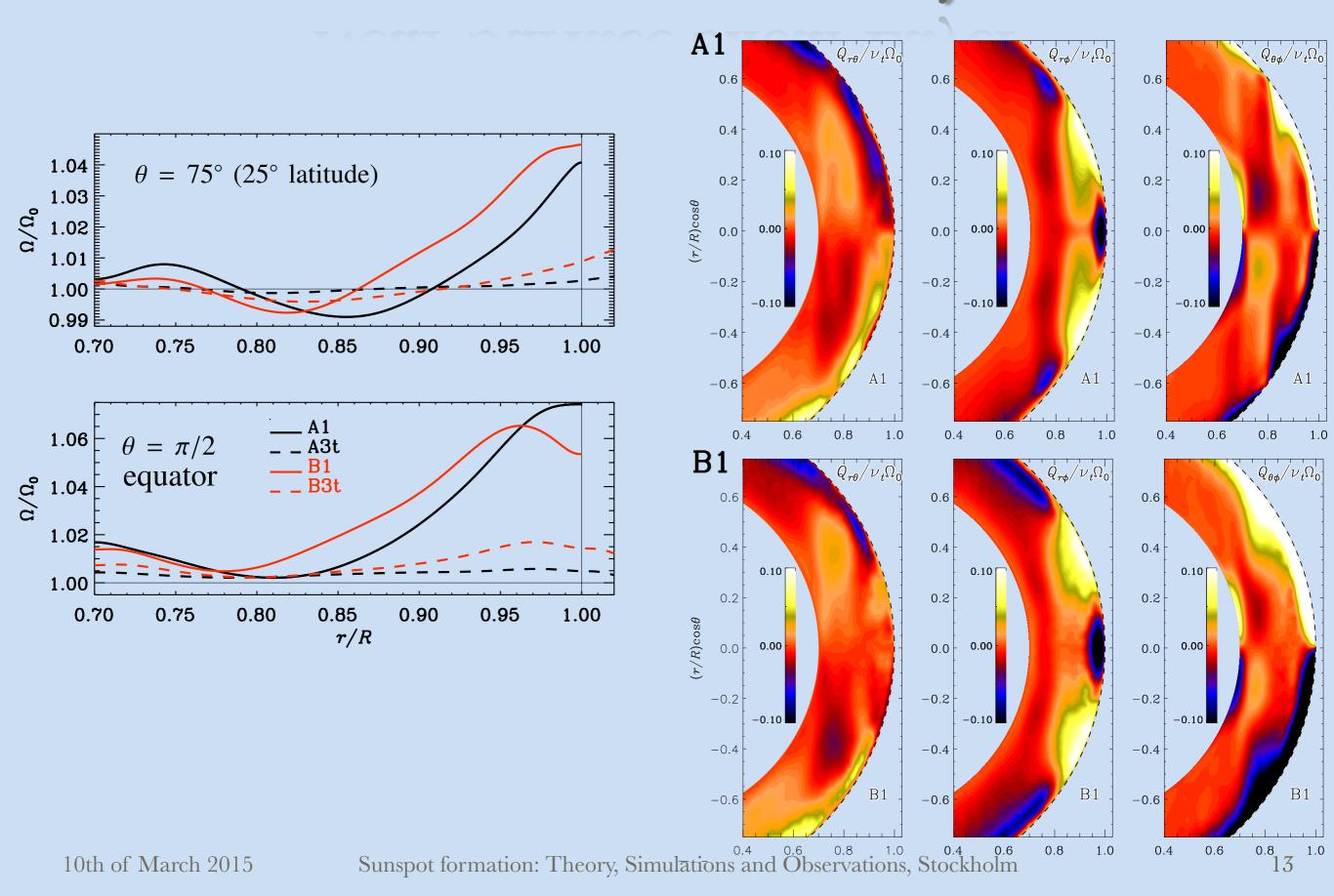


Near-Surface Shear Layer



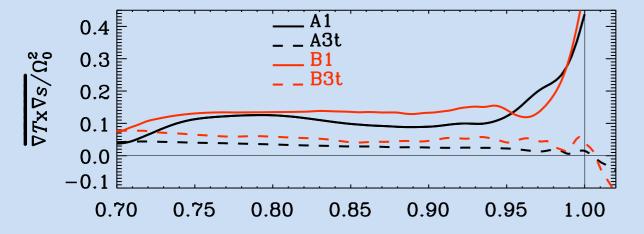


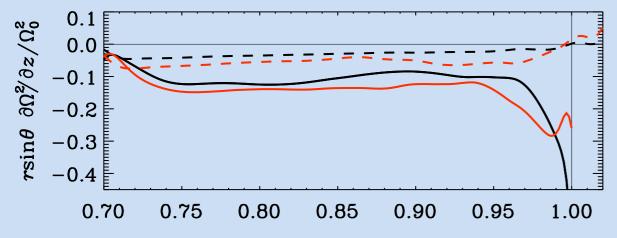
Near-Surface Shear Layer

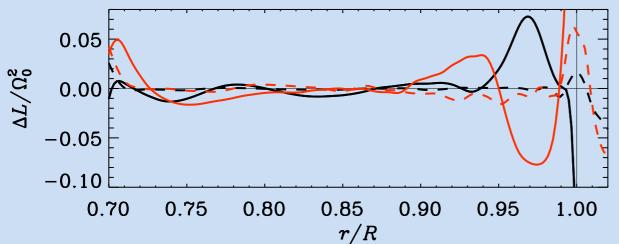


$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left[\overline{\nabla} T \times \overline{\nabla} s \right]_{\phi} - \left[\nabla \times \left(\frac{1}{\overline{\rho}} \nabla \cdot \overline{\rho} \, \overline{u'u'} \right) \right]_{\phi}$$

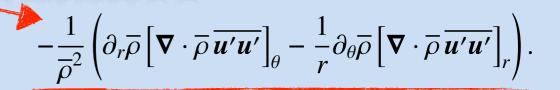
$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left[\overline{\nabla} T \times \overline{\nabla} s \right]_{\phi} - \left[\nabla \times \left(\frac{1}{\overline{\rho}} \nabla \cdot \overline{\rho} \, \overline{u'u'} \right) \right]_{\phi}$$

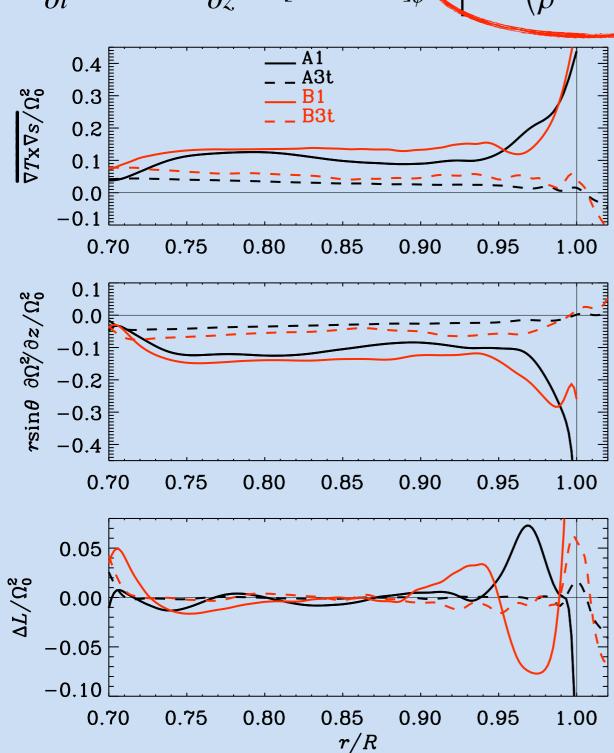




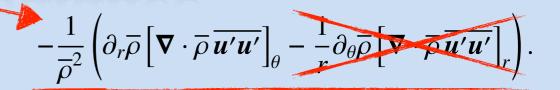


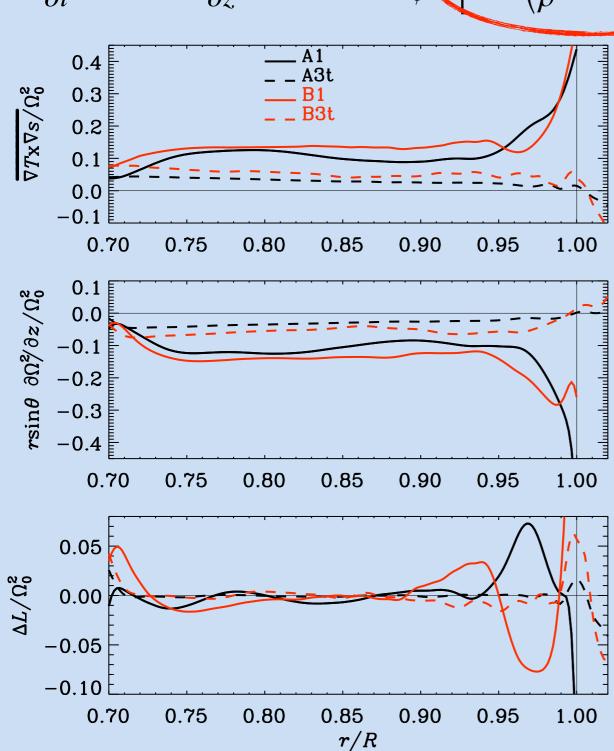
$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left[\overline{\nabla} T \times \overline{\nabla} s \right]_{\phi} \left[\nabla \times \left(\frac{1}{\overline{\rho}} \nabla \cdot \overline{\rho} \, \overline{u'u'} \right) \right]_{\phi}$$





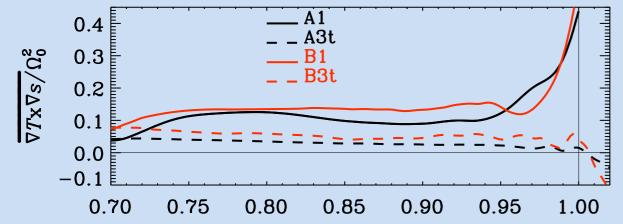
$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left[\overline{\nabla} T \times \overline{\nabla} s \right]_{\phi} \left(- \left[\nabla \times \left(\frac{1}{\overline{\rho}} \nabla \cdot \overline{\rho} \, \overline{u'u'} \right) \right]_{\phi} \right)$$





$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left[\overline{\nabla} T \times \overline{\nabla} s \right]_{\phi} \left[\nabla \times \left(\frac{1}{\overline{\rho}} \nabla \cdot \overline{\rho} \, \overline{u'u'} \right) \right]_{\phi}$$

$$-\frac{1}{\overline{\rho}^2}\left(\partial_r\overline{\rho}\left[\nabla\cdot\overline{\rho}\,\overline{u'u'}\right]_{\theta}-\frac{1}{r}\partial_{\theta}\overline{\rho}\left[\nabla\cdot\overline{\rho}\,\overline{u'u'}\right]_{r}\right).$$



$$-\frac{1}{\overline{\rho}^2}\partial_r\overline{\rho}\left(\frac{1}{r^2}\partial_r\left(r^2\overline{\rho}\overline{u_r'u_\theta'}\right)+\frac{\overline{\rho}}{r}\overline{u_r'u_\theta'}\right)\equiv Q_{r\theta},$$

$$\frac{20}{20}$$
 0.1 $\frac{20}{20}$ 0.0 $\frac{20}{20}$ -0.1 $\frac{20}{20}$ -0.2 $\frac{20}{20}$ -0.3 $\frac{20}{20}$ -0.4 $\frac{20}{20}$ -0.4 0.70 0.75 0.80 0.85 0.90 0.95 1.00

$$-\frac{1}{\overline{\rho}^2}\partial_r\overline{\rho}\left(\frac{1}{r\sin\theta}\partial_\theta\left(r\sin\theta\,\overline{\rho}\,\overline{u_\theta'u_\theta'}\right)\right) \equiv Q_{\theta\theta}.$$

$$0.05$$
 0.00
 -0.05
 -0.10
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
 1.00
 r/R

$$\frac{\partial \overline{\omega}_{\phi}}{\partial t} = r \sin \theta \frac{\partial \Omega^{2}}{\partial z} + \left| \overline{\nabla} T \times \overline{\nabla} s \right|_{\phi} \left(\overline{\nabla} \times \left(\frac{1}{\rho} \, \overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right) \right)_{\phi} - \frac{1}{\rho^{2}} \left(\partial_{r} \overline{\rho} \, \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla} \cdot \overline{\rho} \, \overline{u'u'} \right]_{\theta} - \frac{1}{\rho^{2} \partial_{\theta} \overline{\rho}} \left[\overline{\nabla}$$

Conclusions

- Equatorward propagation in simulation are related to the negative shear.
- Migration of mean magnetic field can be entirely explained by an alpha-omega-dynamo wave
- Parker-Yoshimura-Rule works!
- Near-surface shear layer in the Sun might produce the equatorward migration.
- Change of sign in $Q_{r\theta}$ related to NSSL.
- $\partial_r Q_{r\theta}$ and $\partial_\theta Q_{\theta\theta}$ balance the thermal wind