Flux Emergence Rates

A. Norton, E. Jones, J. Leake, M. Linton Stanford, Naval Research Laboratory in US

Many numerical simulations of flux emergence do not reproduce the observed characteristics of active region evolution.

Goal: Observe flux emergence rates, footpoint separation and other features of AR using HMI Sharp data to compare with simulations.

March 2015, Nordita Sunspot Workshop

Sunspot Emergence & Decay Rates

- There are many observational studies on sunspot emergence and decay.
- Majority of studies are photometric (I_c) data and report values in μ Hem/ day (msh or MSH). More studies on decay than emergence.
- Photometric data tells us about spot formation and convection suppression rate. We need polarimetry to understand B flields. Also, simulations do not capture penumbra behavior well, so comparison with photometric studies not ideal.
- We use HMI Sharp data to study both photometric and magnetic emergence rates for 10 small to mid-size active regions. (+ 3 regions)

Sample Flux Emergence Rates (Mini Literature Review)

- Dobbie, 1939 (left) used data from Greenwich to study growth in (µHem/day) for large (75 msh/day) and small spots (25 msh/day).
 Photometric study.
- Dalla et al (2008) use GRBO data, report growth of ~40 msh/day Photometric study
- Murakozy, Baranyi, Ludmany (2014) nice study using Debrecan data Photometric study

 Centeno 2012 (left) used HMI, studied 2 regions for emergence. 4 × 10¹⁹ Mx/hr (peak flux 6×10²¹ Mx). Flux added by MDFs (moving dipolar features) between the 2 polarities after initial emergence. Magnetic study

Data

- Sharps (Space-weather HMI Active Region patches) are tracked, ME inverted ,azimuth dsiambiguated vector magnetic field data. Movies
 <u>http://jsoc.stanford.edu/data/hmi/</u> HARPs movies/definitive/
- Sharp data, public Jan 2013 but available for entire mission for every active +more with 12 min cadence in 2 geometries– CEA (B_r) & unprojected
- Bobra et al 2014, Sun 2014, Hoeksema et al 2014 and Turmon et al, in prep.

- We examine 10 bipolar AR.
- They must emerge and begin decay on front side of disk, ~ small to mid-size ARs.
- Not using data within +/- 15 of limb.
- We use a noise threshold of 220 Mx cm⁻² so that nothing below this value is considered.
 - Last week, I added 3 AR to extend the range to larger and smaller flux areas.

Flux Range Categories for Sunspots

Ephemeral Region:
Small AR Flux:
Mid-size AR:
Large AR flux:
Note: Penumbra forms

 $\begin{array}{l} 3 \times 10^{18} - 1 \times 10^{20} \ \mathrm{Mx} \\ 1 \times 10^{20} - 5 \times 10^{21} \ \mathrm{Mx} \\ 6 \times 10^{21} - 4 \times 10^{22} \ \mathrm{Mx} \\ \geq 4 \times 10^{22} \ \mathrm{Mx} \\ > 1 - 1.5 \times 10^{20} \ \mathrm{Mx} \end{array}$

Our Sample Range: 2×10^{21} (low) 1×10^{22} (high)

(Added 2 large, 1 small) (range then $3x10^{20}$, $3x10^{22}$)

(Sources: Harvey & Martin 73, Zwaan 78, Schrijver & Zwaan 2000, Hagenaar 2001, Hagenaar et al 2003, Hagenaar, deRosa & Schrijver 2008, Leka & Skumanich 1998)

Fun fact: The monster spot AR 12192 (Harp 4698) that existed from Oct – Nov 2014 was a system containing flux upwards of 1 x 10^{23} Mx with an intensity contrast that indicates a temperature near 2000 K.

In the future, we hope to include larger regions in our study.

RESULTS....both *photometric and magnetic* Preceding (p) spot solid Follower (f) spot – dotted

Total Flux in Region

Flux in penumbra & umbra (< 85% Ic QS)

Flux within Umbra (pixels < 55% Ic QS)

Tilt, footpoint separation, # distinct umbra, flux and area

Determine time emergence begins & ends, decay begins & ends, length of plateaus.

NOAA 11428, 2 Mar 2012 -17° Lat, 550 × 375 sharp_cea_720s Emergence & Decay Rates in 10²⁰ Mx/hr

(p) spot	.52,	31
(f) spot	.51,	24
(p) region	.87,	39
(f) region	.92,	32

I_c [10000, 65000], Br [2700 G, -1500] Flux (×10²¹ Mx) vs Time (hours) Gaussian Smoothed FWHM 20 h

NOAA 11682, 25 Feb 2013 -21° Latitude, 595 × 251

Note: Plateau from ~50-60 hrs

We identified plateaus by hand and do not include them in rates. p (f) spots are solid (dashed) lines respectively. Colors indicate total, penumbra and umbra. Note followers contain less flux by end.

Follower spots begin decay 19 hours, on average, earlier than preceding spots. They do not experience a plateau of stability.

rates of emergence and decay

					_		<u> </u>	
1	NOAA	f_{Φ}	A_d	Φ_d	t_{Φ}	$ au_{e\Phi}$	$ au_{d\Phi}$	
	11141	0.54	45.0	11.3	48.0	0.68	-0.26	
	11184	0.59	175.9	_	_	1.09	_	
	11428	0.57	149.5	41.7	99.7	0.52	-0.31	
	11460	0.47	197.7	47.6	172.3	0.57	-0.62	
	11465	0.59	144.6	42.6	128.0	0.95	-0.44	
	11497	0.51	88.0	26.0	124.3	0.31	-0.36	
	11512	0.67	230.1	55.8	98.6	0.72	-0.27	
	11682	0.49	123.3	35.6	88.9	0.54	-0.26	-
	11723	0.67	129.4	41.7	85.3	0.54	-0.27	
	12053	0.70	31.3	9.5	72.3	0.21	-0.07	
A	verage	0.58	131.6	34.6	101.9	0.61	-0.32	
\mathbf{S}	td Dev	0.08	63.1	15.9	36.0	0.27	0.15	
	NO		4	I			T	1
	NO	AA	A_d	Φ_d	t_{Φ}	$\tau_{e\Phi}$	$ au_{d\Phi}$	
	111	41	49.1	9.2	44.7	0.50	-0.27	
	111	84	117.7	31.0	33.5	0.92	-0.50	
	114	28	147.0	36.6	87.6	0.51	-0.24	
	114	60	178.3	53.8	139.9	0.64	-0.55	
	114	65	87.8	30.6	92.8	1.22	-0.17	
	114	97	100.2	26.5	124.9	0.48	-0.22	
	115	12	137.8	29.7	56.5	0.58	-0.33	
	116	28	_	30.7	99.6	0.52	-0.40	
	117	92	92.7	28.9	81 7	0.38	0.30	
	111	20	04.1	20.0	01.1	0.00	-0.03	

29.1

12.0

83.3

33.5

0.60

0.27

-0.33

0.13

106.2

44.0

Average

Std Dev

Rates for Preceding

Mean emergence rates were 0.61 × 10²⁰ Mx /hr and decay rates were half that, 0.32 x 10²⁰ Mx/hr.

and Following Spots

 Mean emergence rates were 0.6 x 10²⁰ Mx /hr and decay rates were half that, 0.33 x 10²⁰ Mx/h.

 $[\]begin{split} f_{\Phi} &= fraction \ of \ flux \ in \ p \ spot \\ A_d &= Area \ in \ \mu Hem \\ \Phi_d &= magnetic \ flux \ (10^{20} \ Mx) \\ t_{\Phi} &= time \ decay \ begins \ (hrs) \\ \tau_{e\Phi} &= emergence \ rate \ (10^{20} \ Mx/hr) \\ \tau_{d\Phi} &= decay \ rate \ (10^{20} \ Mx/hr) \end{split}$

rates of emergence and decay

Preceding Flux			Follower Flux				
Φ_{max}	t_{max}	$\tau_{e\Phi}$	$ au_{d\Phi}$	Φ_d	t_{Φ}	$\tau_{e\Phi}$	$ au_{d\Phi}$
21.7	48.8	1.02	-0.24	22.7	45.2	0.92	-0.27
_	_	1.26	_	_	_	1.20	_
69.0	99.7	0.75	-0.26	71.7	78.0	0.79	-0.15
101.2	152.0	0.88	-0.79	101.3	140.8	0.77	-0.50
79.5	111.9	1.40	-0.47	72.7	82.8	1.81	-0.14
54.4	188.0	0.44	-0.39	49.0	135.8	0.61	-0.20
82.2	95.0	0.91	-0.40	91.5	80.8	1.08	-0.45
61.2	92.2	0.84	-0.44	61.1	104.4	0.86	-0.45
75.9	98.8	0.73	-0.39	65.2	89.9	0.71	-0.59
26.5	71.8	0.48	-0.14	31.4	72.8	0.43	-0.15
61.6	106.5	0.87	-0.39	65.0	92.3	0.92	-0.32
25.3	41.4	0.30	0.18	25.0	30.5	0.38	0.18
	Φ_{max} 21.7 - 69.0 101.2 79.5 54.4 82.2 61.2 75.9 26.5 61.6 25.3	Precedin Φ_{max} t_{max} 21.748.869.099.7101.2152.079.5111.954.4188.082.295.061.292.275.998.826.571.861.6106.525.341.4	Preceding Flux Φ_{max} t_{max} $\tau_{e\Phi}$ 21.7 48.8 1.02 - - 1.26 69.0 99.7 0.75 101.2 152.0 0.88 79.5 111.9 1.40 54.4 188.0 0.44 82.2 95.0 0.91 61.2 92.2 0.84 75.9 98.8 0.73 26.5 71.8 0.48 61.6 106.5 0.87 25.3 41.4 0.30	Preceding Flux Φ_{max} t_{max} $\tau_{e\Phi}$ $\tau_{d\Phi}$ 21.748.81.02-0.241.26-69.099.70.75-0.26101.2152.00.88-0.7979.5111.91.40-0.4754.4188.00.44-0.3982.295.00.91-0.4061.292.20.84-0.4475.998.80.73-0.3926.571.80.48-0.1461.6106.50.87-0.3925.341.40.300.18	Preceding Flux Φ_{max} t_{max} $\tau_{e\Phi}$ $\tau_{d\Phi}$ Φ_d 21.7 48.8 1.02 -0.24 22.7 - - 1.26 - - 69.0 99.7 0.75 -0.26 71.7 101.2 152.0 0.88 -0.79 101.3 79.5 111.9 1.40 -0.47 72.7 54.4 188.0 0.44 -0.39 49.0 82.2 95.0 0.91 -0.40 91.5 61.2 92.2 0.84 -0.44 61.1 75.9 98.8 0.73 -0.39 65.2 26.5 71.8 0.48 -0.14 31.4 61.6 106.5 0.87 -0.39 65.0 25.3 41.4 0.30 0.18 25.0	Freceding FluxFollowe Φ_{max} t_{max} $\tau_{e\Phi}$ $\tau_{d\Phi}$ Φ_d t_{Φ} 21.748.81.02-0.2422.745.21.2669.099.70.75-0.2671.778.0101.2152.00.88-0.79101.3140.879.5111.91.40-0.4772.782.854.4188.00.44-0.3949.0135.882.295.00.91-0.4091.580.861.292.20.84-0.4461.1104.475.998.80.73-0.3965.289.926.571.80.48-0.1431.472.861.6106.50.87-0.3965.092.325.341.40.300.1825.030.5	Freceding FluxFollower Flux Φ_{max} t_{max} $\tau_{e\Phi}$ $\tau_{d\Phi}$ Φ_d t_{Φ} $\tau_{e\Phi}$ 21.748.81.02-0.2422.745.20.921.261.2069.099.70.75-0.2671.778.00.79101.2152.00.88-0.79101.3140.80.7779.5111.91.40-0.4772.782.81.8154.4188.00.44-0.3949.0135.80.6182.295.00.91-0.4091.580.81.0861.292.20.84-0.4461.1104.40.8675.998.80.73-0.3965.289.90.7126.571.80.48-0.1431.472.80.4361.6106.50.87-0.3965.092.30.9225.341.40.300.1825.030.50.38

 Φ_{max} = magnetic flux (10²⁰ Mx) t_{max} = time decay begins (hrs) $\tau_{e\Phi}$ =emergence rate (10²⁰ Mx/hr) $\tau_{d\Phi}$ =decay rate (10²⁰ Mx/hr)

Rates for Preceding & Following Regions (Not Spots)

 Mean emergence rates were 0.61 x 10²⁰ Mx /hr and decay rates were half that, 0.32 x 10²⁰ Mx/hr.

 Mean emergence rates were 0.6 x 10²⁰ Mx /hr and decay rates were half that, 0.33 x 10²⁰ Mx/h.

Compare with Simulations

Compare with Simulations

- Leake & Linton simulate flux emergence with Lare2.5D, a visco-resistive MHD code, range is -10 Mm to 100 Mm.
- Vary sub-surface initial field profiles, this varies AR flux values.
- Doesn't include convection but includes chromosphere and corona.
- Emergence rate $\approx 1/\beta$. As flux increases, plasma beta decreases, emergence rate increases.

Simulations show emergence rate increases with increased flux.

NASA LWS Grant, PI Linton

Compare with Simulations

Extended flux range -add pts

- AR11158, peak flux 2 x 10²² Mx.
- emergence over 7 days: 36 hours @ 0.6 x 10²² Mx/hr 30 hours @ 3.0 x 10²² Mx 5 days @ 0.78 x 10²² Mx
- AR12108, peak flux 3 x10²² Mx
 8 days at 1 x 10²⁰ Mx/hr
- Harp 4376 peak flux 3 x 10^{20,} 14
 hrs @ 0.14 x 10²⁰ Mx/hr

Observations show emergence rate increases with increased flux.

NASA LWS Grant, PI Linton

Aside: Subsurface Rise Times & Rise Rates

Using Fan 2009 simulations for a rising flux tube and Toriumi et al 2013 helioseismology observations, we estimate the time it takes for flux to emerge from a given depth.

Aside: Footpoint Separations are ~72 Mm

			Point of D		
NOAA	$ heta_T$	l_{max}	A_d	Φ_d	
11141	12.5	94.5	98.1	20.6	
11184	14.7	80.1	293.0	68.9	
11428	-18.6	71.6	278.2	76.8	
11460	6.3	80.2	366.6	98.1	
11465	38.9	53.6	237.5	74.2	
11497	-9.7	65.8	190.7	52.9	
11512	-11.1	63.9	344.3	81.6	
11682	0.9	71.5	232.1	64.0	
11723	-18.7	74.2	240.9	69.4	
12053	11.2	61.1	76.9	23.5	
Average		71.65	235.8	63.0	
S	td Dev	11.6	94.4	24.6	

 I_{max} = footpoint separation in Mm Θ_T = Tilt angle in degrees A_d = Area in µHem Φ_d = magnetic flux in × 10²⁰ Mx Why does the separation of the two polarities of a solar active region stops at the scales of ~100Mm? Fan, Living Review

In simulations, the flux is either linetied at the bottom (emulating a connection to a deeper source), or allowed to move apart to the max. width of the simulation box.

The footpoint separation reaches a maximum after the onset of decay (~a day after) but in theory, there is no reason the footpoints should not continue to separate.

Conclusions

- Flux emergence rates increase with stronger flux regions.
- For regions with (0.2–1) x 10²² Mx, rates were 0.6 x 10²⁰ Mx/hr for p & f spots. Decay rates are half the emergence.
- Surprised that p (f) spots show same rates. (f) finish emergence and start decay 19 hours earlier, on average, than p. Leaders (p) experience a plateau of stability after emergence that f spots do not.
- Simulations both Lare2D (Leake & Linton and MURaM (Rempel & Cheung) find flux emergence rates that are 2-10 times faster than the Sun.
- The umbra and penumbra are built simultaneously and proportionally to the flux emerging into the region. The # of umbra decreases over time (becomes more compact), but this is different than the flux emerging and then the spot assembling.