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Section 1 Directional Basics

Fast-to-slow transmission/conversion
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Schematic of Conversion/Transmission/Reflection
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Acoustic and Magnetic Losses
" Cally & Goossens (2008)

— Uniform inclined field
2kG

— Model S + isothermal
“chromosphere”

— Acoustic driver at -5 Mm

— k,=1.37 rad Mm-

— Calculate wave energy
flux escaping at top

— Strong dependence on 50
direction O, ¢
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Sunspot model

" Application to “realistic”
sunspot models
confirms Alfven
conversion

— Khomenko & Cally
(2012) — 2.5D
— Felipe (2012) — 3D

HEIGHT [Mm]

HEIGHT [Mm]
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* 5mHz k,=1.37 rad Mm-1 seismic wave
* Converts to fast at a=c (full line)

* Reflects beyond w/k.=a

* Alfvén wave flux shows expected

directionality dependent on field
inclination

RADIUS [Mm]

K& C (2012): 5 mHz
Note distorted aspect ratio
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SECTION 2 CONSEQUENCES
FOR SEISMOLOGY
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Simple Model
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Travel Time and Energy Losses

Fast-slow conversion
causes negative travel
time shift

Fast-Alfvén
conversion causes
positive shift that

partially cancels f-s
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Moradi & Cally, Seismology of the wounded sun, MNRAS 2013
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With and without Transition Region

Hansen & Cally (2014)

Without TR
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With TR
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SECTION 3 DIRECTIONAL TIME-
DISTANCE NEAR MODEL SUNSPOT
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Directional TD
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1.5 kG Spot
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2.5 kG Spot
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Effect of Wilson Depression
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Thermal Effect Only




SECTION 4 DIRECTIONALLY DEPENDENT
OBSERVATION IN THE SOLAR ATMOSPHERE
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Acoustic Power Maps with Angle

2002-01-20, ong=56.55 2002-01-21 , ong=43.38 2002-01-22 , ang=30.21

=17.05 2002-01-24 , ang= 3.88 -23, ang= 9.29

5 mHz
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Spectral Synthesis
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Modelling a Sunspot

Ma -1 netic Field (kG \
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Formation of Spectral Lines
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Acoustic Power Maps: Line Core

=g [Mr)

Dilz1an

=

)
@
o
=
=
i

% MONASH UﬂiverSiJ[y Directional Effects 3/31/15




3/31/15

vz power @ 3.5 mHz (over 8 hours)
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Simulations with Distributed sources (Rijs)

* Disk centre, ~140 km constant geometrical height

* Halo clearly visible

* Bellybutton seen in vertical velocity!
* Butif we calculate the signal in Fe6173 line, which follows the
Wilson depression, we pass underneath the bellybutton and

see nothing.

* Indication of mode changing character from transverse to

longitudinal with height.
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Section 4 Summary
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Conclusions

" Magnetic field direction has measureable effects on observed
oscillations

— Affects fast-slow and fast-Alfvén mode conversion
— Affects TD seismic “travel times”
— “Directional TD” feasible (tested only in simulations, not
observations)
— Directional variation of sunspot halos and umbral belly buttons
" Progress of (fast) waves through active region atmospheres has large
affect on “internal” seismology results!

" Active regions are open windows from the interior to atmosphere;
everything is connected

— The “Wounded Sun” (Cally & Moradi 2013)
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