Examination of the magnetic field and motion of an emerging active region (EAR)

Chia-Hsien Lin

Graduate Institute of Space Science, National Central University, Taiwan

2015 March

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

Buoyancy Theory

- (Parker 1955): Magnetic flux tubes are brought up to the solar surface by magnetic buoyancy force.
- (Schuessler 1979): Horizontal magnetic cylinder of radius a

$$F_B \approx \frac{B_0^2 \cdot a^2}{8\Lambda} \quad (\text{Thin tube } a/\Lambda \ll 1)$$
(1)

$$F_B \approx \frac{B_0^2}{4(2\pi)^{1/2}} (a \cdot \Lambda)^{1/2} \quad (\text{Thick tube } a/\Lambda \gg 1)$$
(2)

(Λ : pressure scale height)

• (Chou&Wang 1987): Buoyant velocity

$$V_r = V_A \left(\frac{\pi}{2C_d}\right)^{1/2} \left(\frac{a}{\Lambda}\right)^{1/2} \quad \text{(Thin tube } a/\Lambda \ll 1\text{)} \qquad (3)$$
$$V_r = V_A \left(\frac{\pi}{2C_d^2}\right)^{1/4} \left(\frac{\Lambda}{a}\right)^{1/4} \quad \text{(Thick tube } a/\Lambda \gg 1\text{)} \qquad (4)$$

Buoyancy Theory

Buoyant velocity

$$V_r = \left(\frac{1}{8C_d\Lambda\rho}\right)^{1/2} B a^{1/2} \quad (a/\Lambda \ll 1)$$
(5)

$$V_r = \left(\frac{\pi}{2C_d^2}\right)^{1/4} \frac{\Lambda^{1/4}}{\sqrt{4\pi\rho}} B a^{-1/4} \quad (a/\Lambda \gg 1)$$
(6)

$$\Rightarrow V_r \propto B a^{1/2} (a/\Lambda \ll 1)$$
(7)

$$\Rightarrow V_r \propto B a^{-1/4} (a/\Lambda \gg 1)$$
(8)

A D > A B > A B

∃ →

However,

- real magnetic flux tubes are not horizontal cylinders.
- there are many other effects (e.g., convection, rotation, shape... etc)

However,

- real magnetic flux tubes are not horizontal cylinders.
- there are many other effects (e.g., convection, rotation, shape... etc)

Questions:

- Are the equations for the buoyant velocity still valid?
- How significant are the effects of other realistic effects?

Objective of this study:

To conduct a comparison between the theoretical prediction and observation

Objective of this study:

To conduct a comparison between the theoretical prediction and observation

- theoretical prediction: buoyant velocity (V_r)
- direct observables (from magnetogram):
 - EAR size
 - apparent motion
 - magnetic flux

Objective of this study:

To conduct a comparison between the theoretical prediction and observation

- theoretical prediction: buoyant velocity (V_r)
- direct observables (from magnetogram):
 - EAR size
 - apparent motion
 - magnetic flux

How do we compare V_r with these observables?

1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

 \Rightarrow Check the correlation between V_r and V_h

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

• data: $B_{\rm LOS}$ of 24 different emerging flux regions.

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ?

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ? No correlation between V_r and V_h

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ? No correlation between V_r and V_h

28 years later...

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

 \Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ? No correlation between V_r and V_h

28 years later...

Current study (2015):

• data: total field B from HMI vector magnetogram

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ? No correlation between V_r and V_h

28 years later...

Current study (2015):

- data: total field B from HMI vector magnetogram
- Result ?

- 1 Emerging velocity (V_r) of an arched flux rope \rightarrow footpoint separation velocity (V_h) at the photosphere
- 2 observed B + observed a \rightarrow theoretical V_r

\Rightarrow Check the correlation between V_r and V_h

Past study (Chou&Wang 1987)

- data: $B_{\rm LOS}$ of 24 different emerging flux regions.
- Result ? No correlation between V_r and V_h

28 years later...

Current study (2015):

- data: total field B from HMI vector magnetogram
- Result ? Please wait for a few minutes.

• Separation of the two legs:

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

• Separation of the two legs: **dX**

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

 $\bullet\,$ Separation of the two legs: dX

• Radius:

- Separation of the two legs: **dX**
- Radius: dY/2

- Separation of the two legs: \boldsymbol{dX}
- Radius: dY/2
- B:

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

- Separation of the two legs: \boldsymbol{dX}
- Radius: dY/2
- *B*: B_{ave} of dX×dY

- Separation of the two legs: **dX**
- Radius: **dY/2**
- *B*: B_{ave} of dX×dY
- Define: • $V_{\text{bn}} \equiv \frac{B \, dY^{1/2}}{\max(B \, dY^{1/2})}$

•
$$V_{\rm bk} \equiv \frac{B \, dY^{-1/4}}{\max(B \, dY^{-1/4})}$$

Observation

180° rotated Sun

- Data: HMI vector magnetogram total field *B*
- AR number: 11645
- \bullet Location: \sim S13E17 to S13E7
- Time:
 - ▶ earliest sign: ~ 2013-01-02T10:30
 - clear structure: \sim 2013-01-02T16:00

Observation

∃ →

▲ 周 → - ▲ 三

How to determine dX

- 1 Make an X-t plot: $B(x, \bar{y}, t) =$ N2
 - $\begin{array}{l} B(x,\bar{y},t) = \\ \frac{1}{N2-N1+1} \sum_{j=N1}^{N2} (B(x,y_j,t)) \end{array}$

2 dX: distance between the two bright edges

How to determine dY

- 1 Make an Y-t plot: $B(\bar{x}, y, t) =$ $\frac{1}{N2-N1+1} \sum_{i=N1}^{N2} (B(x_i, y, t))$
- 2 dY: distance between the two bright edges

Result 1/3

2013-01-02118:22:09.10

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

イロト イヨト イヨト イヨト

Result 2/3

- symbol: i^{th} point-and-click result (PAC_i)
- line: $\frac{1}{N} \sum_{i=1}^{N} PAC_i$,

24

24

Why does Vx decrease before 19hr and increase afterward?

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

Result 2/3

- symbol: i^{th} point-and-click result (PAC_i)
- line: $\frac{1}{N} \sum_{i=1}^{N} PAC_i$,

Why does Vx decrease before 19hr and increase afterward?

change of the emerging tube inclination angle?

24

Rising field lines become more vertical may result in reduced V_x

Result 3/3

Chia-Hsien Lin (Graduate Institute of Space Examination of the magnetic field and motior

Past vs. Current

Chou&Wang 1987

2015

Conclusion

- Our qualitative comparison showed correlations between the observed separation velocity and
 - average magnetic field
 - radius
 - buoyant velocity
 - of the emerging active region.

Conclusion

- Our qualitative comparison showed correlations between the observed separation velocity and
 - average magnetic field
 - radius
 - buoyant velocity

of the emerging active region.

- A rigorous quantitative comparison is necessary to examine the consistency level between the observation and theory:
 - buoyancy theory
 - thin and thick tube approximations