Towards understanding the subsurface structure of sunspots

Hannah Schunker

surface structure √?

radius - Wilson depression - magnetic field

Formation, evolution, lifetime? Subsurface structure?

FIG. 1.—A sketch of the conventional idea of the magnetic field configuration of a sunspot. The heavy line represents the visible surface of the Sun.

Parker 1979b

FIG. 2.—A sketch of the proposed magnetic field configuration, in which the field divides into individual flux tubes some distance below the visible surface. The dashed arrows represent the presumed convective downdraft which helps to hold the separate flux tubes together in the tight cluster that constitutes the sunspot.

Fig. 1 Model of a sunspot, consisting of individual tubes tied down at a great depth (schematic)

Spruit 1981

Observational challenges

Computational sunspot seismology

Emerging sunspot regions

Observational challenges

Computational sunspot seismology

Emerging sunspot regions

Inconsistencies in helioseismic inversions of subsurface structure

lssues

I. Understanding the physics

- mode conversion; scattering

e.g. Braun et al 1990; Fan et al 1995; Cally & Bogdan 1995; Crouch & Cally 2005; Schunker et al 2005; Lindsey & Braun 2005; Hanasoge et al 2013

2. Understanding the techniques

- time distance helioseismology; ring diagrams; holography; hankel analysis e.g. Couvidat & Rajaguru 2007; Braun, Birch & Rempel 2011; Moradi et al 2011

3. New diagnostics

- using all available information
- improving the signal to noise
- e.g. Gizon et al 2009; Zhao & Chou 2013; Liang et al 2013

4. New methods of interpretation

- non-linear inversion Max Planck Institute for

Observational challenges

Computational sunspot seismology

Emerging sunspot regions

Numerical simulations

- Realistic numerical simulations: Rempel et al. 2009; Braun, Birch & Rempel 2011
 -include full physics
 -waves are naturally excited
 -computationally expensive
 - -Braun, Birch, Rempel & Duvall 2012; De Grave, Jackiewicz & Rempel 2014

Linearised simulations:

Cameron et al. 2007; Hanasoge et al. 2008; Khomenko & Collados 2006; Parchevsky & Kosovichev 2007; Shelyag et al. 2008

- -faster to compute
- -free to choose any background model
- -require stable background model
- -model of excitation

Y

waves get faster and have lower amplitude

Max Planck Institute for Solar System Research

Vx

X

z ...25Mm

Cameron et al. 2008

calculating the travel-time shift

$$F(x, y, \tau) = \frac{\int \tilde{v}_z(x, y, t) v_z(x, t - \tau) dt}{\int |v_{zQS}(x, t)|^2 dt}$$

Schunker et al 2013

Can perturbations to the sound speed beneath a sunspot be detected?

Sound-speed Perturbations

Schunker et al 2013

Travel-time shift due to subsurface soundspeed perturbations

Does the sensitivity of the travel times change?

[RS + 0.1Cs] - [RS] = [0.1Cs]?

Does the sensitivity of the waves change?

Max Planck Institute for Solar System Research

Schunker et al 2013

Does the sensitivity of the waves change?

Schunker et al 2013

What about other perturbations?

Wilson depression & magnetic field perturbations

Wilson depression & magnetic field perturbations

Travel-time shifts

with respect to travel-time shifts

due to the reference sunspot model

wave packet radial order

		f	p1	p2
	Deep Wilson depression -50 km	+0.5 s	-2.2 s	-3.4 s
	Shallow Wilson depression +50 km	-0.3 s	+1.9 s	+2.8 s
	Magnetic field fanning out below 1Mm	-2.5 s	-2.8 s	-3.4 s
	Obs. Noise level	3.7s	3.5s	1.6s

perturbation

Schunker et al 2013

Solar System Research

Validation of SLiM

Validation of linearised simulations

Parameter space study

Cameron, Schunker, Birch & Yang in prep

Constrain surface properties – large perturbations

Develop new diagnostics

Cross-correlation of a line (wave-packet) Gizon et al 2009

Other quantities Amplitude, phase shifts, geometry

Combine all diagnostics

Average over many sunspots

Amplitude

$$F(x, y, \tau) = \frac{\int \tilde{v}_z(x, y, t) v_z(x, t - \tau) dt}{\int |v_{zQS}(x, t)|^2 dt}$$

Liang, Gizon & Schunker 2013

What about the amplitude sensitivity?

New methods of interpretation

Assessing the adjoint method

Hanasoge et al 2011; M.H.Yang et al. in prep

$$\chi = \int \mathrm{d}t \left[\psi(\mathbf{x}_{\mathbf{r}}, t; R, \delta c) - \psi(\mathbf{x}_{\mathbf{r}}, t; R_0, \delta c_0) \right]^2$$

With 7 days observations p2-modes radius to within 1Mm sound speed to within 1%

r

Computational sunspot seismology summary

Understand the physics

Develop new diagnostics

New methods of interpretation

Observational challenges

Computational sunspot seismology

Emerging sunspot regions

How do sunspots emerge?

I. Rising flux tube

2. Conglomeration of near surface magnetic field Near-surface shear layer? Magneto-convection?

Helioseismology needs ~100 Active Regions Birch et al. 2010

Previous GONG survey

Paper I, Data and Target Selection, Leka et al 2013 Paper II, Average Emergence Properties, Birch et al 2013 Paper III, Statistical Analysis, Barnes et al 2013

- GONG Dopplergrams, MDI magnetograms
- I 00 Emerging Active Regions (EARs) &
 I 00 control regions (CRs) (2001-2007)
- Emerge within 30 degrees of central meridian
- ~30 hours before emergence
- Up to 20 Mm below the surface (no significant flows) Max Planck Institute for

Solar System Research

Emerging Sunspot Regions with HMI

- 105 'clean' ESRs identified by NOAA (May 2010 – November 2012, 2.5×10⁶ AR11066 - AR11624)
 2.0×10⁶
- Emergence time identified

 as when the flux reaches 10%
 of the maximum flux after
 forming a sunspot.
 (using 'corrected' MTOT
 keyword in HARPS;
 cadence of HARP 720 seconds)
- Tracked region up to
 7 days pre- and post-emergence
 65 degrees from central meridian

The SDO/HESR catalogue

Schunker, Braun, Birch & Burston in prep

- Computed using The German Data Centre for SDO
- Datacubes tracked at Carrington rotation and mapped 512x512 pixel, 1.4 Mm/pixel, 410 min datacubes, overlap 90 mins 45 second cadence

German Data Center

for SDO

- Doppler velocity
 Magnetic field (line of sight)
 Averaged magnetograms
 Intensity continuum
 (~I4TB)
- Exactly paired control regions

The SDO/HESR catalogue – control regions y paired latitude, CMD for each ESR separated

- Exactly paired latitude, CMD for each ESR separated in time by at least 2 days
- Make sure there are no ARs within 30 degrees at the time of 'emergence' and six days before (using HARPS data series)
 - No restriction on the absolute magnetic field strength
 - -- must not show evidence of emergence
 - -- ideally 'quieter' than the paired EAR
- No check to see if an AR eventually emerges in the location of the CR! Max Planck Institute for Solar System Research

Average separation speed

Average separation speed

Gilman & Howard 1984; D'Silva & Howard 1994; Caligari et al 1995;Weber et al 2011

Leading polarity = 200-300 m/s Max Planck Institute for

Solar System Research

Individual separation speed

AR11396

Rejected

Lime [days]

Individual separation speed

Solar System Research

max|B

Solar System Research

Magnetic Field Evolution

-6 -4 -2 0 time [days]

Evolution of Sunspot Regions Low Maximum Flux

Emerging sunspot regions summary

High resolution, standardised database magnetic field, intensity, doppler velocity

Follow the emergence and evolution with high cadence separation velocity, tilt angles, flux evolution

> Local helioseismology see talk by Aaron Birch tomorrow

Summary Sunspots are a large perturbation to the waves

Need computational sunspot seismology - To understand the physics - Understand new diagnostics - Develop new methods of interpretation

> Study emerging active regions see talk by Aaron Birch tomorrow

