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Figure 1. Different diffusivity profiles used in kinematic dynamo simulations.
The solid black line corresponds to an estimate of turbulent diffusivity obtained
by combining mixing-length theory (MLT) and the Solar Model S. The fact that
viable solutions can be obtained with such a varied array of profiles has led
to debates regarding which profile is more appropriate. Nevertheless, it is well
known that kinematic dynamo simulations cannot yield viable solutions using
the MLT estimate.
(A color version of this figure is available in the online journal.)

Magnetic “quenching” of the turbulent diffusivity has been
studied before in different contexts by dynamo modelers:
Rüdiger et al. (1994) studied quenching in the context of stellar
and galactic geometries finding that the effect of quenching
is more important in steady dynamos than in oscillating ones;
Tobias (1996) studied quenching in the context of interface
dynamos finding that quenching allows for the restriction of the
magnetic field to a narrow layer in the interface between the
convection and radiative zones and its amplification to super-
equipartition values; Gilman & Rempel (2005) studied how
quenching can contribute to the generation of strong super-
equipartition fields at the bottom of the convection zone, even if
one accounts for the magnetic feedback on differential rotation;
and Guerrero et al. (2009) studied the combined effect of
diffusivity quenching and poloidal source quenching finding
that although diffusivity quenching leads to magnetic field
amplification, it also produces solutions which are farther from
observations than those of standard kinematic simulations.

In this study, we continue the work in progress presented
by Muñoz-Jaramillo et al. (2008) and apply for the first time
diffusivity quenching to actual MLT values thanks to cur-
rent improvements in computational techniques (Hochbruck &
Lubich 1997; Hochbruck et al. 1998; Muñoz-Jaramillo et al.
2009).

We focus on two very specific issues that have never been
addressed before.

1. Does introducing magnetic quenching of the diffusivity
allow the dynamo to reach viable oscillatory solutions if
one starts from an MLT estimated profile?

2. Is there any justification for using kinematic diffusivity
profiles vis-á-vis the effective turbulent diffusivity after
taking quenching into account?

4. THE KINEMATIC MEAN-FIELD DYNAMO MODEL

Our model is based on the axisymmetric dynamo equations:
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where A is the φ-component of the potential vector (from
which Br and Bθ can be obtained), B is the toroidal field
(Bφ), vp is the meridional flow, Ω is the differential rotation,
η is the turbulent magnetic diffusivity, and s = r sin(θ ). In
order to integrate these equations, we need to prescribe four
ingredients: meridional flow, differential rotation, poloidal field
regeneration mechanism, and turbulent magnetic diffusivity.
We use the same meridional flow profile defined by Muñoz-
Jaramillo et al. (2009), which better captures the features present
in helioseismic data. Our flow profile has a penetration depth
of 0.675 R$ and a top speed of 15.0 m s−1. For the differential
rotation we use the analytical form of Charbonneau et al. (1999),
with a tachocline centered at 0.7 R$ and whose thickness is
0.05 R$. For the poloidal field regeneration mechanism, we
use the improved ring-duplet algorithm described by Muñoz-
Jaramillo et al. (2010) and Nandy et al. (2010), but using a value
of K0 = 3900, in order to ensure supercriticality. As Muñoz-
Jaramillo et al. (2010), we restrict active region (AR) emergence
to latitudes between 45◦N and 0◦S since observations show that
active latitudes are located only within this range (Tang et al.
1984; Wang & Sheeley 1989). Specifics about our treatment of
the turbulent diffusivity and numerical methods are described
below. More details regarding kinematic dynamo models can
be found in a review by Charbonneau (2010) and references
therein.

4.1. Turbulent Magnetic Diffusivity and Diffusivity Quenching

As opposed to previous works in which diffusivity is
quenched instantly (Tobias 1996; Gilman & Rempel 2005;
Muñoz-Jaramillo et al. 2008; Guerrero et al. 2009), we intro-
duce an additional state variable ηmq , in order to study the effect
of magnetic quenching on dynamo models, governed by the
following differential equation:

∂ηmq

∂t
= 1

τ

(
ηMLT(r)

1 + B2(r, θ, t)/B2
0

− ηmq(r, θ, t)

)

. (4)

This treatment allows for an efficient implementation in the
context of our numerical scheme (described in Muñoz-Jaramillo
et al. 2009), but has at its core the quenching form used by
Gilman & Rempel (2005), Muñoz-Jaramillo et al. (2008), and
Guerrero et al. (2009), which depends on the magnetic energy in
reference to its equipartition counterpart. This has been found
to describe the suppression of turbulent diffusivity by MHD
simulations (Yousef et al. 2003).

In a steady state, ηmq corresponds to the MLT estimated
diffusivity ηMLT(r) quenched in such a way that the diffusivity

2

ConvecKon	  theory	  predicts	  a	  high	  diffusivity	  –	  
	  dynamo	  models	  require	  a	  low	  diffusivity.	  
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diagram.	  



Sunspots	  are	  a	  measure	  of	  	  toroidal	  flux	  
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We	  can	  plot	  measured	  quanKKes	  against	  
one	  another.	  
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See	  also	  cycle-‐average	  studies:	  
Hathawy	  2015	  
	  Solanki,	  Wenzler	  &	  SchmiR,	  2008	  
Jiang,	  Cameron,	  SchmiR	  &	  Schüssler	  (2011)	  

HWHM(t)	  	  
vs	  	  	  

Sunspot	  Number	  (t)	  

Different	  colors	  represent	  different	  cycles	  
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Sunspot	  number	  decreases	  when	  centre	  of	  acKve	  region	  belt	  moves	  	  
to	  within	  1.8	  HWHM	  of	  the	  equator!	  

Sunspot	  Nzmber(t)	  
vs	  	  	  

Mean	  ||(t)	   HWHM(t)	  vs	  	  Mean	  ||(t)	  



InterpreRaKon	  

Strong	  cycle	  Weak	  cycle	  



InterpreRaKon	  

Strong	  cycle	  Weak	  cycle	  



Model	  with	  	  

Cameron & Schüssler.: The cross-equatorial diffusion of toroidal flux in the Sun.

Fig. 4. Sunspot Number as a function of time relative to when the mean unsigned latitude of the

sunspots was 13◦. Different colors represent different cycles as in figure 1.

where the integral is over the northern hemisphere part of an equatorial plane. We then obtain
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where HWHM = (2.55 × 10−2SSN + 5.09) ∗ π/180. from the fit to Figure 1 and e.g. λc = (S S N −

176)/22∗π/180. from the fit to the dashed curve in Figure 2, and where we have converted degrees

to radians.

We then have an ODE,
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which is non-linear because λc and HWHM are functions of SSN. We solve this ODE numerically.

Figure 4 shows the observed decrease in SSN as a function of time for each cycle. Also shown are

estimates for the evolution of SSN(t) based on the above ODE. The dashed curve is based on the

fit Figure 1, the dashed curve in Figure 2 Rc = 0.7R%, and
R2
%

R2
c

ηturb = 500 km2s−1. The second curve

(dashed-dotted curve) is based on the dash-dotted curve in Figure 2 and
R2
%

R2
c

ηturb = 600 km2s−1.

Since 1 ≤
R2
%

R2
c

≤ 2 we have 250 km2s−1 ≤ ηturb ≤ 600 km2s−1, with most of the uncertainty being

due to the uncertainty in the depth at which the toroidal flux is stored.

4. Conclusion

We suggest that the Waldmeier effect is a consequence of stronger levels of solar activity being

associated with broader butterfly wings which partially cross the equator where they cancel with
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Figure 1. Different diffusivity profiles used in kinematic dynamo simulations.
The solid black line corresponds to an estimate of turbulent diffusivity obtained
by combining mixing-length theory (MLT) and the Solar Model S. The fact that
viable solutions can be obtained with such a varied array of profiles has led
to debates regarding which profile is more appropriate. Nevertheless, it is well
known that kinematic dynamo simulations cannot yield viable solutions using
the MLT estimate.
(A color version of this figure is available in the online journal.)

Magnetic “quenching” of the turbulent diffusivity has been
studied before in different contexts by dynamo modelers:
Rüdiger et al. (1994) studied quenching in the context of stellar
and galactic geometries finding that the effect of quenching
is more important in steady dynamos than in oscillating ones;
Tobias (1996) studied quenching in the context of interface
dynamos finding that quenching allows for the restriction of the
magnetic field to a narrow layer in the interface between the
convection and radiative zones and its amplification to super-
equipartition values; Gilman & Rempel (2005) studied how
quenching can contribute to the generation of strong super-
equipartition fields at the bottom of the convection zone, even if
one accounts for the magnetic feedback on differential rotation;
and Guerrero et al. (2009) studied the combined effect of
diffusivity quenching and poloidal source quenching finding
that although diffusivity quenching leads to magnetic field
amplification, it also produces solutions which are farther from
observations than those of standard kinematic simulations.

In this study, we continue the work in progress presented
by Muñoz-Jaramillo et al. (2008) and apply for the first time
diffusivity quenching to actual MLT values thanks to cur-
rent improvements in computational techniques (Hochbruck &
Lubich 1997; Hochbruck et al. 1998; Muñoz-Jaramillo et al.
2009).

We focus on two very specific issues that have never been
addressed before.

1. Does introducing magnetic quenching of the diffusivity
allow the dynamo to reach viable oscillatory solutions if
one starts from an MLT estimated profile?

2. Is there any justification for using kinematic diffusivity
profiles vis-á-vis the effective turbulent diffusivity after
taking quenching into account?

4. THE KINEMATIC MEAN-FIELD DYNAMO MODEL

Our model is based on the axisymmetric dynamo equations:
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where A is the φ-component of the potential vector (from
which Br and Bθ can be obtained), B is the toroidal field
(Bφ), vp is the meridional flow, Ω is the differential rotation,
η is the turbulent magnetic diffusivity, and s = r sin(θ ). In
order to integrate these equations, we need to prescribe four
ingredients: meridional flow, differential rotation, poloidal field
regeneration mechanism, and turbulent magnetic diffusivity.
We use the same meridional flow profile defined by Muñoz-
Jaramillo et al. (2009), which better captures the features present
in helioseismic data. Our flow profile has a penetration depth
of 0.675 R$ and a top speed of 15.0 m s−1. For the differential
rotation we use the analytical form of Charbonneau et al. (1999),
with a tachocline centered at 0.7 R$ and whose thickness is
0.05 R$. For the poloidal field regeneration mechanism, we
use the improved ring-duplet algorithm described by Muñoz-
Jaramillo et al. (2010) and Nandy et al. (2010), but using a value
of K0 = 3900, in order to ensure supercriticality. As Muñoz-
Jaramillo et al. (2010), we restrict active region (AR) emergence
to latitudes between 45◦N and 0◦S since observations show that
active latitudes are located only within this range (Tang et al.
1984; Wang & Sheeley 1989). Specifics about our treatment of
the turbulent diffusivity and numerical methods are described
below. More details regarding kinematic dynamo models can
be found in a review by Charbonneau (2010) and references
therein.

4.1. Turbulent Magnetic Diffusivity and Diffusivity Quenching

As opposed to previous works in which diffusivity is
quenched instantly (Tobias 1996; Gilman & Rempel 2005;
Muñoz-Jaramillo et al. 2008; Guerrero et al. 2009), we intro-
duce an additional state variable ηmq , in order to study the effect
of magnetic quenching on dynamo models, governed by the
following differential equation:

∂ηmq

∂t
= 1

τ

(
ηMLT(r)

1 + B2(r, θ, t)/B2
0

− ηmq(r, θ, t)

)

. (4)

This treatment allows for an efficient implementation in the
context of our numerical scheme (described in Muñoz-Jaramillo
et al. 2009), but has at its core the quenching form used by
Gilman & Rempel (2005), Muñoz-Jaramillo et al. (2008), and
Guerrero et al. (2009), which depends on the magnetic energy in
reference to its equipartition counterpart. This has been found
to describe the suppression of turbulent diffusivity by MHD
simulations (Yousef et al. 2003).

In a steady state, ηmq corresponds to the MLT estimated
diffusivity ηMLT(r) quenched in such a way that the diffusivity
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Figure 1. Different diffusivity profiles used in kinematic dynamo simulations.
The solid black line corresponds to an estimate of turbulent diffusivity obtained
by combining mixing-length theory (MLT) and the Solar Model S. The fact that
viable solutions can be obtained with such a varied array of profiles has led
to debates regarding which profile is more appropriate. Nevertheless, it is well
known that kinematic dynamo simulations cannot yield viable solutions using
the MLT estimate.
(A color version of this figure is available in the online journal.)

Magnetic “quenching” of the turbulent diffusivity has been
studied before in different contexts by dynamo modelers:
Rüdiger et al. (1994) studied quenching in the context of stellar
and galactic geometries finding that the effect of quenching
is more important in steady dynamos than in oscillating ones;
Tobias (1996) studied quenching in the context of interface
dynamos finding that quenching allows for the restriction of the
magnetic field to a narrow layer in the interface between the
convection and radiative zones and its amplification to super-
equipartition values; Gilman & Rempel (2005) studied how
quenching can contribute to the generation of strong super-
equipartition fields at the bottom of the convection zone, even if
one accounts for the magnetic feedback on differential rotation;
and Guerrero et al. (2009) studied the combined effect of
diffusivity quenching and poloidal source quenching finding
that although diffusivity quenching leads to magnetic field
amplification, it also produces solutions which are farther from
observations than those of standard kinematic simulations.

In this study, we continue the work in progress presented
by Muñoz-Jaramillo et al. (2008) and apply for the first time
diffusivity quenching to actual MLT values thanks to cur-
rent improvements in computational techniques (Hochbruck &
Lubich 1997; Hochbruck et al. 1998; Muñoz-Jaramillo et al.
2009).

We focus on two very specific issues that have never been
addressed before.

1. Does introducing magnetic quenching of the diffusivity
allow the dynamo to reach viable oscillatory solutions if
one starts from an MLT estimated profile?

2. Is there any justification for using kinematic diffusivity
profiles vis-á-vis the effective turbulent diffusivity after
taking quenching into account?

4. THE KINEMATIC MEAN-FIELD DYNAMO MODEL

Our model is based on the axisymmetric dynamo equations:
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∂θ

∂(sB)
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, (3)

where A is the φ-component of the potential vector (from
which Br and Bθ can be obtained), B is the toroidal field
(Bφ), vp is the meridional flow, Ω is the differential rotation,
η is the turbulent magnetic diffusivity, and s = r sin(θ ). In
order to integrate these equations, we need to prescribe four
ingredients: meridional flow, differential rotation, poloidal field
regeneration mechanism, and turbulent magnetic diffusivity.
We use the same meridional flow profile defined by Muñoz-
Jaramillo et al. (2009), which better captures the features present
in helioseismic data. Our flow profile has a penetration depth
of 0.675 R$ and a top speed of 15.0 m s−1. For the differential
rotation we use the analytical form of Charbonneau et al. (1999),
with a tachocline centered at 0.7 R$ and whose thickness is
0.05 R$. For the poloidal field regeneration mechanism, we
use the improved ring-duplet algorithm described by Muñoz-
Jaramillo et al. (2010) and Nandy et al. (2010), but using a value
of K0 = 3900, in order to ensure supercriticality. As Muñoz-
Jaramillo et al. (2010), we restrict active region (AR) emergence
to latitudes between 45◦N and 0◦S since observations show that
active latitudes are located only within this range (Tang et al.
1984; Wang & Sheeley 1989). Specifics about our treatment of
the turbulent diffusivity and numerical methods are described
below. More details regarding kinematic dynamo models can
be found in a review by Charbonneau (2010) and references
therein.

4.1. Turbulent Magnetic Diffusivity and Diffusivity Quenching

As opposed to previous works in which diffusivity is
quenched instantly (Tobias 1996; Gilman & Rempel 2005;
Muñoz-Jaramillo et al. 2008; Guerrero et al. 2009), we intro-
duce an additional state variable ηmq , in order to study the effect
of magnetic quenching on dynamo models, governed by the
following differential equation:

∂ηmq

∂t
= 1

τ

(
ηMLT(r)

1 + B2(r, θ, t)/B2
0

− ηmq(r, θ, t)

)

. (4)

This treatment allows for an efficient implementation in the
context of our numerical scheme (described in Muñoz-Jaramillo
et al. 2009), but has at its core the quenching form used by
Gilman & Rempel (2005), Muñoz-Jaramillo et al. (2008), and
Guerrero et al. (2009), which depends on the magnetic energy in
reference to its equipartition counterpart. This has been found
to describe the suppression of turbulent diffusivity by MHD
simulations (Yousef et al. 2003).

In a steady state, ηmq corresponds to the MLT estimated
diffusivity ηMLT(r) quenched in such a way that the diffusivity
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What	  about	  this?	  



The	  buRerfly	  wings	  maintain	  a	  HWHM	  of	  6	  
degrees	  for	  many	  years	  (weak	  cycles)	  	  

or	  the	  HWHM	  decreases	  (strong	  cycles).	  
Why	  don‘t	  the	  buRerfly	  wings	  diffuse	  

outwards?	  
turb=250	  km2/s	  =53	  (°)2/year	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	                        ≈72	  (°)2/year	  

Suggests	  turb	  <<	  250	  km2/s	  	  ??	  	  



What	  we	  can	  observe	  is	  the	  buRerfly	  
diagram.	  



The	  average	  buRerfly	  wings	  	  



The	  flow	  required	  to	  prevent	  diffusion	  
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where the integral is over the northern hemisphere part of an equatorial plane. We then obtain

dSSN

dt
=

∫ π

0

N(λ, t)dλ (9)

=
ηturb

R2
c

∂N(λ, t)

∂λ
|λ=0 (10)

Using the fits to the central latitude and HWHM from Figures 3 and 4, we can write

∂N(λ, t)

∂λ
|λ=0= −

SSN

HWHM

√

log 2

π
exp

(

−
λ2

c log 2

HWHM2

)

× 2

(

λc log 2

HWHM2

)

(11)

where HWHM = (2.55 × 10−2SSN + 5.09) ∗ π/180. from the fit to Figure 2 and e.g. λc = (S S N −

176)/22∗π/180. from the fit to the dashed curve in Figure 3, and where we have converted degrees

to radians.

We then have an ODE,

dSSN

dt
= −
ηturb

R2
c

SSN

HWHM

√

log 2

π

2λc log 2

HWHM2
exp

(

−
λ2

c log 2

HWHM2

)

(12)

which is non-linear because λc and HWHM are functions of SSN. We solve this ODE numerically.

Figure 5 shows the observed decrease in SSN as a function of time for each cycle. Also shown are

estimates for the evolution of SSN(t) based on the above ODE. The dashed curve is based on the

fit Figure 2, the dashed curve in Figure 3 Rc = 0.7R$, and
R2
$

R2
c

ηturb = 500 km2s−1. The second curve

(dashed-dotted curve) is based on the dash-dotted curve in Figure 3 and
R2
$

R2
c

ηturb = 600 km2s−1.

Since 1 ≤
R2
$

R2
c

≤ 2 we have 250 km2s−1 ≤ ηturb ≤ 600 km2s−1, with most of the uncertainty being

due to the uncertainty in the depth at which the toroidal flux is stored.

4. Deriving the flow field required to maintain the butterfly diagram

The high value of ηturb found above will cause the butterfly wings to diffuse outwards, contrary to

the observations in Figure 4. We therefore here find what flow is required to prevent the spreading

out of the butterfly wings due to diffusion. To do so we begin with the induction equation,

∂B

∂t
= ∇ × (U × B) − ∇ × ηturb∇ × B (13)

and note that the rate at which the butterfly wings propagate towards the equator is between 1

and 2 degrees/year. Since the rate at which the wings are expected to spread due to diffusion is

significantly higher we can make the approximation that the diffusion is balanced by the advective

term, i.e.

∇ × (U × B) = ∇ × ηturb∇ × B. (14)

Uncurling this yields

U × B = ηturb∇ × B (15)

where we have set the arbitrary scalar potential to zero. The r-component of the previous equation

gives us (assuming azimuthal symmetry)

UθBφ − UφBθ =
ηturb

r sin(θ)

∂ sin(θ)Bφ

∂θ
. (16)
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,	   ,	  Terms	  relevant	  for	  laKtudinal	  expansion:	   { { {

AdvecKve	   Source	   Diffusive	  

Source	  is	  distributed,	  and	  is	  locally	  substanKally	  smaller	  than	  the	  other	  two	  terms	  (in	  the	  Sun).	  	  



The	  flow	  required	  to	  prevent	  diffusion	  

Astronomy & Astrophysics manuscript no. note c© ESO 2015
February 25, 2015

The turbulent magnetic diffusivity of the solar

convection zone.

R.H. Cameron1 and M. Schüssler1

Received ; accepted

ABSTRACT

Context. a

Aims. b

Methods. c

Results. d

Conclusions. e

Key words. Magnetohydrodynamics (MHD) – Sun: dynamo – Sun: surface magnetism

1. Introduction

2. Manfred’s second point.

Since this point is just a matter of formal manipulations of the equation, I address this issue first.

Manfred suggests that we use the form

−
1

r

∂UθBφ

∂θ
=

η

r2 sin(θ)

∂

∂θ

(

sin(θ)
∂Bφ

∂θ

)

−
ηBφ

r2 sin2(θ)

As explained below, Robert would not have chosen this form, but since they are all equivalent it is

a valid choice.

Let RHS denote all the terms on the right hand side of equation 1. Then

RHS =
η

r2 sin(θ)

∂

∂θ

(

sin(θ)
∂Bφ
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)

−
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−
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−
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+
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r2 sin(θ)
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∂ sin(θ)Bφ
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η cos(θ)
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r sin(θ)
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So

−
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∂UθBφ

∂θ
=

1

r

∂

∂θ

(

η

r sin(θ)

∂ sin(θ)Bφ

∂θ

)

This is a nice form for us to work with. Uncurling the equation just corresponds to dropping the

outermost 1
r

∂
∂θ

, and the result in the draft follows.

Note that the manipulations above are because of the form we started in. The result follows

more trivially from

B = (0, 0, Bφ)

U = (0,Uθ, 0)

∂

∂φ
= 0

so

∇ × (∇ × B) = ∇ ×

(

1

r sin(θ)

∂ sin(θ)Bφ

∂θ
r̂

)

=
1

r

∂

∂θ

(

1

r sin(θ)

∂ sin(θ)Bφ

∂θ

)

φ̂

3. Manfred’s first point.

Manfred argues that the UφBθ term should not be ignored, and gives reasonable values where the

terms are equal.

Robert admits that the UφBθ is not as small compared to UθBφ as he would like, but argues it

is still OK. (Note that solid body rotation ofcourse drops out as part of the ’potential’ term.) The

argument is, as stated in the paper, that the toroidal field is generated over many latitudes over

a number of years, with some substantial fraction stored underneath the active region belt. This

means that locally the generation UφBθ is substantially less important than the transport into the

active region latitudes UθBφ. More importantly the diffusive term will cause the flux to diffuse

outwards substantially faster than it is locally generated (ie the field strength will fall by a factor of

2 in a year).
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The term corresponding to UφBθ represents the winding up of the poloidal field due to latitudinal

differential rotation, which occurs throughout the bulk of the convection zone. The amount gen-

erated beneath the activity belt is therefore only a small portion of the total toroidal flux which is

generated, and thus we expect | UθBφ |!| UφBθ | beneath the activity belt. We then have

UθBφ =
ηturb

r sin(θ)

∂ sin(θ)Bφ

∂θ
. (17)

or

Uθ =
ηturb

r sin(θ)Bφ

∂ sin(θ)Bφ

∂θ
. (18)

We assume that the butterfly diagram reflects the toroidal field beneath the surface, and so can

evaluate the right hand side of Equation 18 based on the properties of the butterfly wings. To reduce

the noise, we average the 12 cycles shown in Figure 2. Because all cycles propagate towards the

equator in the same way Waldmeier (1955); Hathaway (2011) we can align all the cycles in time

with respect to the year during which the mean latitude of the sunspot groups in each wings is

closest to 15◦. The choice of 15◦ is somewhat arbitrary, but all groups had a reasonable number

of sunspots near this latitude. In any case our results are not sensitive to this choice. The average

cycle, based on this alignment of the individual cycles, is shown if Figure 6. The result only makes

sense where in the butterfly wings (because this is where we have data), and the result is shown in

Figure 7. We note that the high velocities required near the equator would be required to stop any

cross-equatorial diffusion of the field. Since high cross-equatorial diffusion was suggested as the

explanation for the Waldmeier effect in Section 3, it should be understood that these strong flows

near the equator are an artifact of the way in which we have constructed the flows (by requiring

that they exactly balance the diffusive expansion of the butterfly diagram).

The inflows that we have derived here as being necessary for maintaining the butterfly wings

are similar in extent and amplitude to the actually observed, shallow, inflows into the active region

latitudes (Gizon et al. 2001; Gizon 2004; Zhao & Kosovichev 2004). Identifying these observed

flows with the flows required to maintain the butterfly diagram, as derived here, seems reasonable.

It leads to the conclusion that the toroidal field is stored in the bulk of the convection zone (or

in some upper fraction of the convection zone) where the toroidal flux can be kept in a narrow

latitudinal band by the inflows. Toroidal flux generated outside these bands will be transported into

the activity latitudes by a combination of the high diffusivity and advection due to the inflows.

We do not here speculate on what causes the bands to migrate equatorward, but do comment that

once the bands arrive near the equator then the inflows will extend across the equator and cancel

with the inflows into the activity belt in the opposite hemisphere. In this way the inflows have a

substantially reduced impact in preventing toroidal flux from diffusing and cancelling across the

equator (consistent with our explanation of the Waldmeier effect).

5. Conclusion

We suggest that the Waldmeier effect is a consequence of stronger levels of solar activity being

associated with broader butterfly wings that partially cross the equator where they cancel with

oppositely directed toroidal field. Our argument rests on the observation that when the butterfly
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Observed	  inflows	  	  at	  the	  surface,	  	  
return	  flow	  at	  50Mm(?)	  Flow	  required	  to	  counter	  diffusive	  expansion	  

Strong	  flows	  near	  equator	  to	  counter	  diffusion	  are	  not	  present	  in	  the	  observaKons	  –	  
this	  is	  why	  we	  have	  strong	  cross-‐equator	  diffusion.	  	  



Conclusions:	  III	  
•  Inflows	  into	  acKvity	  belt	  necessary	  to	  maintain	  
buRerfly	  wings.	  

•  BuRerfly	  diagram	  is	  essenKally	  nonlinear.	  

•  Toroidal	  field	  is	  located	  	  
	  	  	  	  close	  to	  the	  surface	  	  
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Figure 1. Different diffusivity profiles used in kinematic dynamo simulations.
The solid black line corresponds to an estimate of turbulent diffusivity obtained
by combining mixing-length theory (MLT) and the Solar Model S. The fact that
viable solutions can be obtained with such a varied array of profiles has led
to debates regarding which profile is more appropriate. Nevertheless, it is well
known that kinematic dynamo simulations cannot yield viable solutions using
the MLT estimate.
(A color version of this figure is available in the online journal.)

Magnetic “quenching” of the turbulent diffusivity has been
studied before in different contexts by dynamo modelers:
Rüdiger et al. (1994) studied quenching in the context of stellar
and galactic geometries finding that the effect of quenching
is more important in steady dynamos than in oscillating ones;
Tobias (1996) studied quenching in the context of interface
dynamos finding that quenching allows for the restriction of the
magnetic field to a narrow layer in the interface between the
convection and radiative zones and its amplification to super-
equipartition values; Gilman & Rempel (2005) studied how
quenching can contribute to the generation of strong super-
equipartition fields at the bottom of the convection zone, even if
one accounts for the magnetic feedback on differential rotation;
and Guerrero et al. (2009) studied the combined effect of
diffusivity quenching and poloidal source quenching finding
that although diffusivity quenching leads to magnetic field
amplification, it also produces solutions which are farther from
observations than those of standard kinematic simulations.

In this study, we continue the work in progress presented
by Muñoz-Jaramillo et al. (2008) and apply for the first time
diffusivity quenching to actual MLT values thanks to cur-
rent improvements in computational techniques (Hochbruck &
Lubich 1997; Hochbruck et al. 1998; Muñoz-Jaramillo et al.
2009).

We focus on two very specific issues that have never been
addressed before.

1. Does introducing magnetic quenching of the diffusivity
allow the dynamo to reach viable oscillatory solutions if
one starts from an MLT estimated profile?

2. Is there any justification for using kinematic diffusivity
profiles vis-á-vis the effective turbulent diffusivity after
taking quenching into account?

4. THE KINEMATIC MEAN-FIELD DYNAMO MODEL

Our model is based on the axisymmetric dynamo equations:

∂A
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+
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∂θ

∂(sB)
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, (3)

where A is the φ-component of the potential vector (from
which Br and Bθ can be obtained), B is the toroidal field
(Bφ), vp is the meridional flow, Ω is the differential rotation,
η is the turbulent magnetic diffusivity, and s = r sin(θ ). In
order to integrate these equations, we need to prescribe four
ingredients: meridional flow, differential rotation, poloidal field
regeneration mechanism, and turbulent magnetic diffusivity.
We use the same meridional flow profile defined by Muñoz-
Jaramillo et al. (2009), which better captures the features present
in helioseismic data. Our flow profile has a penetration depth
of 0.675 R$ and a top speed of 15.0 m s−1. For the differential
rotation we use the analytical form of Charbonneau et al. (1999),
with a tachocline centered at 0.7 R$ and whose thickness is
0.05 R$. For the poloidal field regeneration mechanism, we
use the improved ring-duplet algorithm described by Muñoz-
Jaramillo et al. (2010) and Nandy et al. (2010), but using a value
of K0 = 3900, in order to ensure supercriticality. As Muñoz-
Jaramillo et al. (2010), we restrict active region (AR) emergence
to latitudes between 45◦N and 0◦S since observations show that
active latitudes are located only within this range (Tang et al.
1984; Wang & Sheeley 1989). Specifics about our treatment of
the turbulent diffusivity and numerical methods are described
below. More details regarding kinematic dynamo models can
be found in a review by Charbonneau (2010) and references
therein.

4.1. Turbulent Magnetic Diffusivity and Diffusivity Quenching

As opposed to previous works in which diffusivity is
quenched instantly (Tobias 1996; Gilman & Rempel 2005;
Muñoz-Jaramillo et al. 2008; Guerrero et al. 2009), we intro-
duce an additional state variable ηmq , in order to study the effect
of magnetic quenching on dynamo models, governed by the
following differential equation:

∂ηmq

∂t
= 1

τ

(
ηMLT(r)

1 + B2(r, θ, t)/B2
0

− ηmq(r, θ, t)

)

. (4)

This treatment allows for an efficient implementation in the
context of our numerical scheme (described in Muñoz-Jaramillo
et al. 2009), but has at its core the quenching form used by
Gilman & Rempel (2005), Muñoz-Jaramillo et al. (2008), and
Guerrero et al. (2009), which depends on the magnetic energy in
reference to its equipartition counterpart. This has been found
to describe the suppression of turbulent diffusivity by MHD
simulations (Yousef et al. 2003).

In a steady state, ηmq corresponds to the MLT estimated
diffusivity ηMLT(r) quenched in such a way that the diffusivity
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