

Atmospheric seismology of solar active regions

ANETA WISNIEWSKA & M.Roth, J.Staiger

Kiepenheuer Institut für Sonnenphysik (KIS) Freiburg, Germany

STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Motivation for research

 Observational challenge(MULTI-HEIGHT observation) instrument & measurement

 Helioseismic analysis
Quiet Sun area as a context to the active region and sunspot results

Summary

Motivation

- Provide MULTI-wave length observations
- Investigating the propagation of acoustic waves to understand the structure of the quiet and magnetized atmosphere
- Propagation of an acoustic waves above the active regions and the sunspots

Chromosphere

Motivation

 Provide MULTI-wave length observations

Chromosphere

2000 km

800 km

400 km

200 km

http://www.ips.gov.au

Penumbra

Umbra

- Investigating the propagation of acoustic waves to understand the structure of the quiet and magnetized atmosphere
- Propagation of an acoustic waves above the active regions and the sunspots
- Analysis of the kinematic energy transfer within the solar atmosphere at high temporal and spatial resolution.
- Estimating the deposit of acoustic energy with height.
- Confirmation of formation heights for the spectral lines

The instrument : HELLRIDE @ VTT

- We carry out the observation with the new Fabry-Pérot based spectrometer HELLRIDE (Helioseismologic Large Regions Interfeometric Device) @ the Vacuum Tower Telescope, Tenerife.
- HELLRIDE was designed and developed in KIS for helioseismic measurements

Interference filters

the filter-matrix, double etalon system.

Staiger, A&A (2009) Staiger A&A (2011)

measurements

Prefilters: 8 Spectral lines: 10

QS [nm]	AR [nm]	SS [nm]
Fe I 543.4 Na I D 2 589.0 Na I D 1 589.6 H alpha 656.2 Fe I 557.6 Fe I 630.2 Fe I 630.2 Fe I 630.2 Mg I 517.2 Fe I 617.3 (HMI line)	Fe I 543.4 Fe I 543.3 Na I D2 589.0 Ni 589.3 Na I D1 589.6 H alpha 656.2 Fe I 557.6 Fe I 630.2 Mg I 517.2 Fe I 617.3	Fe I 543.4 Fe I 543.3 Na I D2 589.0 Ni 589.3 Na I D1 589.6 H alpha 656.2 Fe I 557.6 Fe I 630.2 Mg I 517.2 Fe I 617.3

Height difference: about 1400 km

(middle photosphere – lower chromosphere)

FoV: 100 arc sec

Image size: 512 x 512 pixels

Resolution => 0,2 arcsec / pixel

Cadence : 60 sec

Total time of measurement: 8,5 hours

Absorption line	Lande g	Pre-filter width [Å]	Formation height [km]
Mg b2 5172	1.75	10	583 ± 100
Fe I 5434	0	4.0	687 ± 250
Fe I 5576	0	3.0	402 ± 105
Na D2 5890	0	3.2	961 ± 200
Na D1 5896	0	3.0	580 ± 600
Fe I 6173	0	3.0	332 ± 230
Fe I 6301	1.6	3.0	$304{\pm}120$
Fe I 6302	2.5	3.0	337 ± 100
$H\alpha$ 6563	0	6.0	$1986(*) \pm 150$
			(*) intensity contribution function

Pore [AR 12053]

a) the Intensity map from HMI instrument (450.0 nm)

b) Colorized magnetogram from HMI instrument c) the Dopplergram from HMI instrument for the same region

Active Region [AR 12055]

a) velocity field calculated from HELLRIDE in the Sun Spot (AR 12055) in a wavelength 617.3 nm b) the Dopplergram from HMI instrument for the same sunspot c) the Intensity map from HMI instrument (450.0 nm)

d) Colorized magnetogram from HMI instrument

Results from Mai 2014 Quiet Sun, Active Region, Sunspot

Wisniewska, Roth, Staiger 2015 in prep.

The cut off frequency in the QS

- The cut-off frequency represents highest frequency for acoustic solar eigenmodes. Is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities.
- In solar case: $\omega_c / 2\pi = 5.3 mHz$

Phase differences for spectral lines 5434 and 6173, 5576

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Phase differences for spectral lines 5434 and 6173, 5576

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Phase diagrams QS for H alpha with other 6 spectral lines

 $\Lambda z \approx 1400 km$ $\Delta z \approx 1100 km$ $\Lambda z \approx 900 km$ a) QS,phase difference between H alpha and 6173 c) QS,phase difference between H alpha and 5172 QS,phase difference between H alpha and 5896 e) 8 8 8 50 50 50 Frequency [mHz] Frequency [mHz] Frequency [mHz] 6 6 6 degrees degrees degrees 0 0 0 -50 -50 -50 2 2 2 0 C 500 1500 500 1000 1500 500 1000 0 1000 0 0 1500 Harmonic degree I Harmonic degree I Harmonic degree I QS,phase difference between H alpha and 5576 QS, phase difference between H alpha and 5434 QS, phase difference between H alpha and 5890 f) b) d) 8 8 8 50 50 50 Frequency [mHz] Frequency [mHz] Frequency [mHz] 6 6 6 degrees degrees degrees 0 0 0 -50 -50 -50 2 2 2 0 0 0 500 1000 1500 1000 1500 1500 0 0 500 0 500 1000 Harmonic degree I Harmonic degree I Harmonic degree I $\Delta z \approx 1300 km$ $\Delta z \approx 1000 km$ $\Delta z \approx 800 km$

Phase diagrams QS for H alpha with other 6 spectral lines

Cut-off frequency is shifted towards higher frequencies

Cut off frequency as a function of height in the solar atmosphere

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Active Region – pore Phase diagrams

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Sunspot model

Magnetohydrostatic Sunspot model from deep subphotospheric to chromospheric layers, up to 2000km

Khomenko & Collados, ApJ, (2008)

Sunspot Phase diagrams

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015

Phase diagrams for 3 regions QS AR SP

Waves travel times diagrams for 3 regions QS AR SP

SUMMARY

- MULTI- height observations allows to study structure of the solar atmosphere & together helioseismic analyze we can track the propagation of the waves through the solar atmospheric layers.
- The shift of the cut off frequency towards higher frequencies for the p-modes is a function of the height in the solar atmosphere

Thank You!

A. Wisniewska, STOCKHOLM, SUNSPOT FORMATION, 09-13 March 2015