Effects of rotation and stratification on magnetic flux concentrations

[turbulence] [stratification] [magnetic field]

Illa R. Losada

Nordita and Stockholm University

Sunspot formation 11 Mar 2015

"It is also a good rule not to put overmuch confidence in the observational results that are put forward until they are confirmed by theory." Arthur Eddington

Flux tubes

Parker instability (1955)

Flux tubes

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

Figure 1 : Caligari et al. (1995)

Flux tubes

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

Negative Effective Magnetic Pressure Instability

・ロ> (個) (目) (目) (目) (の)

Vertical field. Sunspot-like structure

Figure 3: Cuts of $B_z/B_{eq}(z)$ in the xy plane at the top boundary $(z/H_{\rho 0} = 1.2)$ and the xz plane through the middle of the spot at y = 0 for $\gamma = 5/3$ and $\beta_0 = 0.05$. In the xz cut, we also show magnetic field lines and flow vectors obtained by numerically averaging in azimuth around the spot axis.

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Vertical field. Sunspot-like structure

Figure 4 : Rempel et al. (2014) and Losada et al. (2014)

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Velocity field and NEMPI

Forced Velocity field

NEMPI.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三日 のへで

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

Let's go back to the equations!

MHD equations

Magnetohydrodynamics (MHD): equations for the dynamics of the plasma.

- Maxwell equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times \mathbf{E}$
- Mass conservation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0$
- Momentum conservation: $\rho \frac{\mathrm{D} \mathbf{U}}{\mathrm{D} t} = -\nabla \rho + \mathbf{J} \times \mathbf{B}$
- Low frequency Maxwell eq. : $\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J}$
- Energy conservation: $\frac{d}{dt} \left(\frac{p}{\rho^{\gamma}} \right) = 0$
- Ohm's law: $\mathbf{E} + \mathbf{U} \times \mathbf{B} = \eta \mu_0 \mathbf{J}$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

MHD equations

Magnetohydrodynamics (MHD): equations for the dynamics of the plasma.

- Maxwell equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times \mathbf{E}$
- Mass conservation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0$
- Momentum conservation: $\rho \frac{\mathrm{D} \mathbf{U}}{\mathrm{D} t} = -\nabla p + \mathbf{J} \times \mathbf{B}$

- Low frequency Maxwell eq. : $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$
- Energy conservation: d/dt
- Ohm's law: $\mathbf{E} + \mathbf{U} \times \mathbf{B} = \eta \mu_0 \mathbf{J}$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

MHD equations

Magnetohydrodynamics (MHD): equations for the dynamics of the plasma.

- Maxwell equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times \mathbf{E}$
- Mass conservation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0$
- Momentum conservation: $\rho \frac{\mathrm{D} \mathbf{U}}{\mathrm{D} t} = -\nabla p + \mathbf{J} \times \mathbf{B}$
- Low frequency Maxwell eq. : $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$
- Energy conservation: $\frac{d}{dt}\left(\frac{p}{\rho^{\gamma}}\right) = 0$
- Ohm's law: $\mathbf{E} + \mathbf{U} \times \mathbf{B} = \eta \mu_0 \mathbf{J}$

Missing: viscosity, heating, condution, radiation, gravity, rotation, ionisation, etc

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Solve MHD equations

MHD simulations

- Goal of simulations: solve MHD equations.
- Not possible to use solar parameters: $\operatorname{Re} \approx \frac{UL}{\nu} \approx 10^{10} - 10^{15}$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Conclusions

Solve MHD equations

MHD simulations

- Goal of simulations: solve MHD equations.
- Not possible to use solar parameters: $\operatorname{Re} \approx \frac{UL}{\nu} \approx 10^{10} - 10^{15}$

Simulations

- Direct Numerical Simulations (DNS)
- Mean-field Simulations (MFS)
- Large Eddy Simulations (LES)

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

MFS and DNS: How to cook paella!

Mean Field Simulations (MFS)

- ► Quantities = averaged + fluctuations: F = F + f
- Approximations: add or subtract terms in the equations.
- Control the physics.

Direct Numerical Simulations (DNS)

- Solve full equations.
- Approximations: only in resolution.
- No control.

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

14/35

Direct Numerical Simulations (DNS)

- Solve full equations.
- Approximations: only in resolution.
- No control.

Magnetic flux concentrations Illa R. Losada

DNS First results

Effects of rotation Effects of stratification 2-lavers model +

MHD Simulations

MFS and DNS: How to cook paella!

Mean Field Simulations (MFS)

- Quantities = averaged + fluctuations: $F = \overline{F} + f$
- Approximations: add or subtract terms in the equations.
- Control the physics.

Goal: Obtain DNS results with known MFS physics.

MFS and DNS: How to cook paella!

Mean Field Simulations (MFS)

- ► Quantities = averaged + fluctuations: F = F + f
- Approximations: add or subtract terms in the equations.
- Control the physics.

Direct Numerical Simulations (DNS)

- Solve full equations.
- Approximations: only in resolution.
- No control.

Goal: Obtain DNS results with known MFS physics.

Simulations done with Pencil Code (http://pencil-code.googlecode.com), and a set of the set of the

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Full MHD equations.

Direct Numerical simulations (DNS):

- Continuity equation: $\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{U})$
- Momentum equation: $\rho \frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -\nabla \rho + \mathbf{J} \times \mathbf{B} + \rho \mathbf{g} + \rho \mathbf{F}_{\nu} + \rho \mathbf{f}$
- Induction equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{U} \times \mathbf{B} \eta \mu_0 \mathbf{J})$

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Full MHD equations.

Direct Numerical simulations (DNS):

- Continuity equation: $\frac{\partial \rho}{\partial t} = \boldsymbol{\nabla} \cdot (\rho \boldsymbol{\mathsf{U}})$
- Momentum equation: $\rho \frac{\mathrm{D}\mathbf{U}}{\mathrm{D}t} = -\nabla \rho + \mathbf{J} \times \mathbf{B} + \rho \mathbf{g} + \rho \mathbf{F}_{\nu} + \rho \mathbf{f}$
- ► Induction equation: $\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{U} \times \mathbf{B} \eta \mu_0 \mathbf{J})$

Setup:

- ► Forcing, k_f/k₁ = 15 (control scale separation)
- ► Strong stratification: density contrast ≈ 535
- $B_0/B_{eq0} = 0.05$ (in range)
- 64³x128 mesh-points
- $\operatorname{Re}_M \approx \frac{UL}{\eta} = 6$

Figure 7: $\Delta \overline{\mathbf{B}} / B_{eq0}$ (Brandenburg et al. 2011).

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Mean-Field MHD equations.

Quantities = averaged+ fluctuations: $F = \overline{F} + f$

Mean field simulations (MFS):

- Continuity equation: $\frac{D\overline{\rho}}{Dt} = -\overline{\rho} \nabla \cdot \overline{\mathbf{U}}$
- Momentum equation: $\frac{D\overline{\mathbf{U}}}{Dt} = -c_{s}^{2} \nabla \ln \overline{\rho} + \mathbf{g} + \overline{\boldsymbol{\mathcal{F}}}_{M} + \overline{\boldsymbol{\mathcal{F}}}_{K}$
- Induction equation: $\frac{\partial \overline{\mathbf{B}}}{\partial t} = \boldsymbol{\nabla} \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\mathbf{u} \times \mathbf{b}}) + \eta \boldsymbol{\nabla}^2 \overline{\mathbf{B}}$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

From induction equation: dynamo instability

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \mathbf{\nabla} \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\mathbf{u} \times \mathbf{b}}) + \eta \nabla^2 \overline{\mathbf{B}}$$

 α -effect (Steenbeck et al. 1966; Moffat 1978; Krause & Rädler 1980)

- Isotropic case: $\overline{\mathbf{u} \times \mathbf{b}} = \alpha \overline{\mathbf{B}} \eta_t \overline{\mathbf{J}}$
- If $\alpha \neq \mathbf{0} \rightarrow \text{generate a } \overline{\mathbf{B}}$
- $\alpha \propto$ helicity
- η_t : turbulent diffusivity.

Responsible for the Sun's large-scale field.

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

(1)

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Magnetic flux concentrations Illa R. Losada

(2)

(3)

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $\overline{\mathcal{F}}_{M}$: Lorentz Force \rightarrow magnetic stress tensor $\overline{\mathcal{F}}_{K}$: Reynolds stresses \rightarrow kinetic stress tensor

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$\begin{array}{l} \mbox{From momentum equation: NEMPI} \\ \frac{D \boldsymbol{U}}{D t} = -c_{\rm s}^2 \boldsymbol{\nabla} \ln \overline{\rho} + \boldsymbol{g} + \overline{\boldsymbol{\mathcal{F}}}_{\rm M} + \overline{\boldsymbol{\mathcal{F}}}_{\rm K} \end{array}$

 $\overline{\boldsymbol{\mathcal{F}}}_{\mathrm{M}}$: Lorentz Force \rightarrow magnetic stress tensor $\overline{\boldsymbol{\mathcal{F}}}_{\mathrm{K}}$: Reynolds stresses \rightarrow kinetic stress tensor

Total pressure:

$$P_T = P_{gas} + \frac{\overline{\mathbf{B}}^2}{2\mu_0} + p_t$$

Flux tubes

NEMP

(2)

(3)

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

From mompute equation: NEMPI $\frac{\overline{D}t}{Dt} = -c_s^2 \nabla \ln \overline{\rho} + \mathbf{g} + \overline{\mathcal{F}}_M + \overline{\mathcal{F}}_K$ $\overline{\mathcal{F}}_M : \text{Lorentz Force} \rightarrow \text{magnetic stress tensor}$ $\overline{\mathcal{F}}_K : \text{Reynolds stresses} \rightarrow \text{kinetic stress tensor}$ Total pressure:

$$P_T = P_{gas} + \underbrace{\frac{\overline{\mathbf{B}}^2}{2\mu_0} + p_t}_{\text{Effective magnetic pressure}}$$

.

(2)

(3)

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Conclusions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Magnetic flux concentrations Illa R. Losada

(2)

(3)

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $\overline{\mathcal{F}}_{\mathrm{M}}$: Lorentz Force \rightarrow magnetic stress tensor $\overline{\mathcal{F}}_{\mathrm{K}}$: Reynolds stresses \rightarrow kinetic stress tensor

Total pressure:

$$P_T = P_{gas} + P_{eff}$$

・ロト・4回ト・4回ト・4回ト・4回ト・4回ト

Magnetic flux concentrations Illa R. Losada

Flux

(2)

(3)

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $\label{eq:FM} \begin{array}{l} \overline{\boldsymbol{\mathcal{F}}}_{\mathrm{M}}: \text{ Lorentz Force } \rightarrow \text{ magnetic stress tensor} \\ \overline{\boldsymbol{\mathcal{F}}}_{\mathrm{K}}: \text{ Reynolds stresses} \rightarrow \text{ kinetic stress tensor} \end{array}$

Total pressure:

$$P_T = P_{gas} + P_{eff}$$

Effective magnetic pressure = turbulent pressure = hydrodynamic + magnetic

Magnetic flux concentrations Illa R. Losada

Flux tube

NEMP

(2)

(3)

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $\overline{\boldsymbol{\mathcal{F}}}_M: \text{ Lorentz Force } \to \text{ magnetic stress tensor} \\ \overline{\boldsymbol{\mathcal{F}}}_K: \text{ Reynolds stresses } \to \text{ kinetic stress tensor} \\$

Total pressure:

$$P_T = P_{gas} + P_{eff}$$

Effective magnetic pressure = turbulent pressure = hydrodynamic + magnetic

$$P_{eff} = \left(1 - q_p(\overline{\mathbf{B}})\right) \frac{\overline{\mathbf{B}}^2}{2\mu_0}$$
(4)
$$< b^2 >= f(\overline{\mathbf{B}})\overline{\mathbf{B}}^2 = q_p \ 3 \ \overline{\mathbf{B}}^2$$
(5)

・ロト・日本・モート モート ショックタイ

Illa R. Losada

(2)

(3)

-lux tube

NEMP

MHD Simulations DNS MFS First results

Magnetic flux

concentrations

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $\overline{\boldsymbol{\mathcal{F}}}_{\mathrm{M}}$: Lorentz Force ightarrow magnetic stress tensor $\overline{\boldsymbol{\mathcal{F}}}_{\mathrm{K}}$: Reynolds stresses ightarrow kinetic stress tensor

Total pressure:

$$P_T = P_{gas} + P_{eff} = P_{gas} + (1 - q_p(\overline{\mathbf{B}})) \frac{\mathbf{B}^2}{2\mu_0}$$

Effective magnetic pressure = turbulent pressure = hydrodynamic + magnetic

$$P_{eff} = \left(1 - q_{p}(\overline{\mathbf{B}})\right) \frac{\overline{\mathbf{B}}^{2}}{2\mu_{0}}$$
(4)
$$< b^{2} >= f(\overline{\mathbf{B}})\overline{\mathbf{B}}^{2} = q_{p} \ 3 \ \overline{\mathbf{B}}^{2}$$
(5)

Pressure. NEMPI.

Effective magnetic pressure (Kemel et. al 2012):

(effects of turbulence on the mean Lorentz force)

$$P_{eff} = rac{1}{2}(1-q_p)\overline{\mathbf{B}}^2/\overline{B}_{eq}^2$$
 (6)

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

Negative Effective Magnetic Pressure Instability (NEMPI)

- Regions below the minimum value of $P_{eff} \rightarrow \mathsf{NEMP}$
- ▶ NEMP + strong stratification ($|\nabla \ln \rho| > |\nabla \overline{\mathbf{B}}|$) → NEMPI ¹
- ▶ Magnetic field suppress turbulence → structures sink!

¹Predicted: Kleeorin et al. 1989, 1990; Kleeorin & Rogachevskii 1994; Kleeorin et al. 1996; Rogachevskii & Kleeorin 2007. Confirmed: Brandenburg et al. 2011 ∢ () → ⟨ ≥ → ⟨ ≥ → ∠] = √ ()

MFS Parametrization

Normalized effective magnetic pressure:

$$\mathcal{P}_{ ext{eff}} = rac{1}{2}(1-q_{ ext{p}})eta^2$$

 $q_{\mathrm{p}}(eta)$ approximated by (Kemel et al. 2012a):

(empirical, fits to DNS results)

$$q_\mathrm{p}(eta) = rac{q_\mathrm{p0}}{1+eta^2/eta_\mathrm{p}^2} = rac{eta_\star^2}{eta_\mathrm{p}^2+eta^2},$$

(8)

(7)

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

 $q_{\rm p0}$, $\beta_{\rm p}$, and $\beta_{\star} = \beta_{\rm p} q_{\rm p0}^{1/2}$: constants. $\mathcal{P}_{\rm eff}$ has a minimum value $\mathcal{P}_{\rm min}$ at $\beta_{\rm min}$, related with the parameters:

$$\beta_{\rm p} = \beta_{\rm min}^2 \left/ \sqrt{-2\mathcal{P}_{\rm min}}, \quad \beta_{\star} = \beta_{\rm p} + \sqrt{-2\mathcal{P}_{\rm min}}.$$
 (9)

Growth rate:

$$\frac{\lambda}{\eta_t k^2} \approx 3\beta_* \frac{k_f/k}{kH_\rho - 1} \tag{10}$$
Previous results.

- NEMP and NEMPI described in DNS and MFS².
- NEMPI observed in DNS and MFS ³
- Parameters values studied for maximize the growth strength and time:
 - $k_{\rm f}/k_1 = 30$ (scale separation ratio)

•
$$\operatorname{Re} \equiv u_{\mathrm{rms}} / \nu k_{\mathrm{f}} = 36$$

•
$$P_{\rm m} = \nu / \eta = 0.5.$$

 $\blacktriangleright \ {\rm Re}_M = P_{\rm m} {\rm Re} = 18$

My contribution:

- Effects of rotation
- Effects of stratification

²Kleeorin et al. 1989, 1989, 1996; Kleeorin & Rogachevskii 1994;
 Rogachevskii & Kleeorin 2007; Brandenburg et al. 2010
 ³Brandenburg et al. 2011, 2012; Kemel et al. 2012 = + (=) = ○ a

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMPI

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Units

Magnetic field

Equipartition field strength: $B_{eq} = \sqrt{\mu_0 \rho} u_{rms}$ Sun (top-bottom): 300 G - 3 kG Sunspots: 1 kG

Time

Turnover time: $\tau_c = \frac{1}{u_{\rm rms}k_{\rm f}}$ Sun: $10^3 - -10^{-1}$ hours

Length

Density scale height: $H_{\rho} = \frac{c_{\rm s}^2}{g}$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Some results

◆□> <団> <目> <目> <目> のQC

Rotation. Structures evolution

Magnetic flux concentrations Illa R. Losada

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

24 / 35

Rotation. MFS and DNS growth rates.

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation

Effects of stratification 2-layers model +

Conclusions

Figure 10: MFS (i): $q_{p0} = 20$ and $\beta_p = 0.167$; MFS (ii): $q_{p0} = 32$ and $\beta_p = 0.058$. $B_0/B_{eq0} = 0.05$. $q_{\rho} = \frac{\beta_*^2}{(\beta_p^2 + \beta^2)}$ $\beta = \frac{\overline{B}}{B_{eq0}}$ $\lambda_{*0} \equiv \beta_* u_{rms}/H_{\rho} \equiv * \langle \Xi \rangle = \langle \Xi \rangle \equiv \langle \Sigma \rangle \langle \Sigma \rangle$

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Polytropic EoS: q-exponential

Isentropic

$$rac{
ho}{
ho_0} = \left[1+\left(\gamma-1
ight)\left(-\Phi/c_{s0}^2
ight)
ight]^{1/(\gamma-1)}$$

Density and Scale Height dependence.

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification

2-layers model + rotation

Conclusions

Figure 11 : Polytropes with $\gamma = 1$ (solid line), 1.2 (dash-dotted), 1.4 (dotted), and 5/3 (dashed) for

315

Stratification. Horizontal imposed field (MFS).

Figure 12: \overline{B}_{γ} in the kinematic growth phase for $\gamma = 1$ (top row), 1.4 (middle row), and 5/3 (bottom row) and $\beta_0 = 0.01$ (left column), 0.02, (middle column), and 0.05 (right column) in the presence of a horizontal field using the perfect conductor boundary condition.

Horizontal: $k_{\perp}H_{\rho} \sim 0.8...1$ Vertical: $k_{\perp}H_{\rho} \sim 0.7...1$

◆□ → < □ → < = → < = → < □ → < □ → < = → < = → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification

2-layers model + rotation

Vertical imposed field (DNS vs MFS). Evolution.

Magnetic flux concentrations Illa R. Losada

MHD Simulations DNS MFS First results

Effects of rotation Effects of stratification

2-layers model + rotation

 $\beta_0 = 0.05$

Figure 14 : MFS

 B_z/B_{eq0}

0.2

0.4

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Parameters dependence study in polytropic stratification

0.04 $\gamma = 5/3$ $\gamma = 1.4$ 0.02 $\gamma = 1.2$ 0.00 н -0.02 \mathcal{P}_{eff} -0.04-0.06γ=5/3 v -0.08-0.100.2 0.5 0.0 0.1 0.3 0.4 β

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

rotation

2-layers model + rotation

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification

2-layers model + rotation

Magnetic flux concentrations Illa R. Losada

Figure 18 : Magnetic power spectra

Conclusions.

Rotation.

NEMPI depends on the ratio between rotation and turbulence.

- Turnover time: $au \approx$ 2hours
- On the Sun: only upper-most layers (supergranulation layer $au \sim 1$ day)

Polytropic EoS:

- NEMPI develops in the uppermost layers.
- Isothermal models applicable locally.
- ► No "potato-sack" effect with vertical fields.

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

```
Conclusions
```

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model + rotation

Conclusions

Formation

Observations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Conclusions

Formation

Flux tube?

Observations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Formation

- Flux tube?
- ► NEMPI?

Observations

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Conclusions

Formation

- Flux tube?
- ► NEMPI?
- ► Flux tube + NEMPI?

Observations

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Formation

- Flux tube?
- NEMPI?
- Flux tube + NEMPI?
- Other ?

Observations

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Formation

- Flux tube?
- NEMPI?
- Flux tube + NEMPI?
- Other ?

Observations

Downflow/uppflow

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Formation

- Flux tube?
- NEMPI?
- Flux tube + NEMPI?
- Other ?

Observations

- Downflow/uppflow
- Structure depth

Magnetic flux concentrations Illa R. Losada

Flux tubes

NEMP

MHD Simulations DNS MFS First results

Some results

Effects of rotation Effects of stratification 2-layers model +

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

Why the pressure is negative?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why the pressure is negative?

Total Energy

$$E = E_k + E_m \approx ext{const}$$

Magnetic flux concentrations Illa R. Losada

Appendix

(11)

1st approach 2nd approach Stress tensor

Why the pressure is negative?

Total Energy

$$E = E_k + E_m \approx \text{const}$$
 (11)

Total pressure + mean field considerations

$$P_T = P_{gas} + \frac{\overline{\mathbf{B}}^2}{2\mu_0} + p_t \tag{12}$$

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

Why the pressure is negative?

Total Energy

 $E = E_k + E_m \approx \text{const}$

Total pressure + mean field considerations

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

(12)

(11)

From momentum equation: NEMPI Why the pressure is negative? Total Energy $E = E_k + E_m \approx \text{const}$ Total pressure + mean field considerations $P_T = P_{gas} + P_{eff}$ Turbulent pressure = hydrodynamic + magnetic $p_t = \frac{E_m}{3} + \frac{2E_k}{3} = \frac{2}{3}(E_k + E_m) - \frac{1}{3}E_m$

Change in pressure:

$$\delta p_t = -\frac{1}{3}E_m \tag{14}$$

Magnetic flux concentrations Illa R. Losada

Appendix

(11)

(12)

(13)

1st approach 2nd approach Stress tensor

From momentum equation: NEMPI
Why the pressure is negative?Magnetic flux
concentrations
Illa R. LosadaTotal Energy
 $E = E_k + E_m \approx \text{const}$
Total pressure + mean field considerations
 $P_T = P_{gas} + P_{eff} = P_{gas} + (1 - q_p(\overline{\mathbf{B}}))\frac{\overline{\mathbf{B}}^2}{2\mu_0}$ (12)

Turbulent pressure = hydrodynamic + magnetic

$$p_t = \frac{E_m}{3} + \frac{2E_k}{3} = \frac{2}{3}(E_k + E_m) - \frac{1}{3}E_m$$
(13)
$$E_m = \left(\frac{\langle b^2 \rangle}{2}\right)$$
(14)

 $< b^2 >$: magnetic fluctuations of the mean magnetic field

$$\langle b^2 \rangle = f(\overline{\mathbf{B}})\overline{\mathbf{B}}^2 = q_p \ \Im \ \overline{\mathbf{B}}^2$$
 (15)

Appendix

1st approach 2nd approach Stress tensor

1st aproach:

Total stress tensor (lsotropic turbulence)

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)
1st aproach:

Total stress tensor (lsotropic turbulence)

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)
$$\rho U^2 - B^2 + \frac{3}{2} B^2$$
(17)

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

Appendix

1st approach 2nd approach Stress tensor

1st aproach:

Total stress tensor (lsotropic turbulence)

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)

$$\rho U^2 - B^2 + \frac{3}{2}B^2 = \rho u^2 + B^2 - \frac{1}{2}B^2$$
(17)

・ロト < 個ト < 目ト < 目ト < 目本 のQQ

1st aproach:

Total stress tensor (Isotropic turbulence)

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)

$$\rho U^2 - B^2 + \frac{3}{2}B^2 = \underbrace{\rho U^2 + B^2}_{\text{constant}} - \frac{1}{2}B^2 \tag{17}$$

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

Total stress tensor (lsotropic turbulence)

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)

$$\rho U^2 - B^2 + \frac{3}{2}B^2 = \underbrace{\rho U^2 + B^2}_{\text{constant}} - \frac{1}{2}B^2$$
(17)

The magnetic field decrease the turbulent pressure!

1st aproach:

Total stress tensor (lsotropic turbulence)

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

37 / 35

1st aproach:

Total stress tensor (lsotropic turbulence)

$$\sigma = \delta_{ij} \left(\rho U_i U_j - B_i B_j + \frac{1}{2} \delta_{ij} B^2 \right)$$
(16)

$$\rho U^2 - B^2 + \frac{3}{2}B^2 = \underbrace{\rho U^2 + B^2}_{\text{constant}} - \frac{1}{2}B^2$$
(17)

Approx:

$$p_{turb} = \frac{1}{3}\rho v^2 \approx \frac{\frac{1}{3}\rho v_0^2}{1 + a_p \frac{B^2}{B_{eq}^2}}$$
(18)

・ロト・日本・モート モート ショックタイ

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} + \frac{\overline{\mathbf{B}}^2}{2\mu_0} + p_t$$

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

(19)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} +$$

Effective magnetic pressure

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

(19)

・ロ> < 回> < 三> < 三> < 回> < 回

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} + P_{eff} \tag{19}$$

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} + P_{eff} \tag{19}$$

Turbulent pressure

Total turbulent pressure = hydrodynamic + magnetic

$$p_t = \frac{E_m}{3} + \frac{2E_k}{3} = \frac{2}{3}(E_k + E_m) - \frac{1}{3}E_m$$
(20)

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} + P_{eff}$$

Total turbulent pressure = hydrodynamic + magnetic

$$p_t = \frac{E_m}{3} + \frac{2E_k}{3} = \frac{2}{3}(E_k + E_m) - \frac{1}{3}E_m$$
 (20)

Change in pressure:

$$\delta p_t = -\frac{1}{3}E_m \tag{21}$$

Magnetic flux concentrations Illa R. Losada

Appendix 1st approach 2nd approach Stress tensor

(19)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

From momentum equation: NEMPI 2nd aproach: Total pressure + mean field considerations Total pressure

$$P_T = P_{gas} + P_{efl}$$

Magnetic flux concentrations Illa R. Losada

Appendix 1st approach 2nd approach Stress tensor

(19)

Turbulent pressure

Total turbulent pressure = hydrodynamic + magnetic

$$p_{t} = \frac{E_{m}}{3} + \frac{2E_{k}}{3} = \frac{2}{3}(E_{k} + E_{m}) - \frac{1}{3}E_{m}$$
(20)
$$E_{m} = \left(\frac{\langle b^{2} \rangle}{2}\right)$$
(21)

 $< b^2 >$: magnetic fluctuations of the mean magnetic field

$$\langle b^2 \rangle = f(\overline{\mathbf{B}})\overline{\mathbf{B}}^2 = q_p \ 3 \ \overline{\mathbf{B}}^2$$
 (22)

2nd aproach: Total pressure + mean field considerations Total pressure

$$P_{T} = P_{gas} + P_{eff} = P_{gas} + (1 - q_{p}(\overline{\mathbf{B}}))\frac{\mathbf{B}^{2}}{2\mu_{0}}$$
(19)

Turbulent pressure

Total turbulent pressure = hydrodynamic + magnetic

$$p_t = \frac{E_m}{3} + \frac{2E_k}{3} = \frac{2}{3}(E_k + E_m) - \frac{1}{3}E_m$$
(20)

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Stress tensor.

Momentum equation:

$$\frac{D\overline{\mathbf{U}}}{Dt} = -c_{\rm s}^2 \nabla \ln \overline{\rho} + \mathbf{g} + \overline{\mathcal{F}}_{\rm M} + \overline{\mathcal{F}}_{\rm K}$$
(21)

♡♪♡♡ 비로 《로》 《퇴》 《□》

Magnetic stress tensor: Lorentz Force, \mathcal{F}_{M} :

$$\mathcal{F}_{\mathrm{M}} = \mathbf{J} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^{2} + (\mathbf{B} \cdot \nabla) \mathbf{B} = -\nabla_{j} \left[\frac{1}{2} \mathbf{B}^{2} \delta_{ij} - B_{i} B_{j} \right] = \nabla_{j} \sigma_{ij}$$
Mean Lorentz Force, $\overline{\mathcal{F}}_{\mathrm{M}}$:
$$\overline{\mathcal{F}}_{\mathrm{M}} = -\nabla_{i} \left[\frac{\langle b^{2} \rangle}{\delta_{ii}} - \langle b_{i} b_{i} \rangle \right] = \nabla_{i} \sigma_{ii}^{m} \qquad (23)$$

$$\mathcal{F}_{\mathrm{M}} = -\nabla_{j} \left[\frac{1}{2} \delta_{ij} - \langle b_{i}b_{j} \rangle \right] = \nabla_{j}\sigma_{ij}^{m}$$
(23)

Isotropic turbulence:

$$\sigma_{ij}^{m} = -\frac{\langle b^{2} \rangle}{2} \delta_{ij} + \langle b_{i}b_{j} \rangle = -\frac{\langle b^{2} \rangle}{2} \delta_{ij} + \frac{\langle b^{2} \rangle}{3} \delta_{ij}$$
$$= -\frac{1}{3} \left(\frac{\langle b^{2} \rangle}{2}\right) \delta_{ij} = -\frac{W_{m}}{3}$$
(24)

Magnetic flux concentrations Illa R. Losada

Magnetic flux concentrations Illa R. Losada

Appendix

1st approach 2nd approach Stress tensor

Kinetic stress tensor: Reynolds stresses

$$\langle v_i v_j \rangle = \frac{\langle v^2 \rangle}{3} \delta_{ij} = \frac{2}{3} \frac{\langle v^2 \rangle}{2} \delta_{ij} = \frac{2}{3} W_k \delta_{ij}$$
 (25)

(isotropic turbulence)