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Outline
• iPIC3D code and its algorithm.

• 3 different simulation initial set-up to study different physical 
problems:

• 1) Antiparallel Harris equilibrium to study reconnection front 
instabilities.

• 2) Harris equilibrium with guide field to study instabilities along 
the separatrices.

• 3) Harris current sheet with multiple x-lines to study plasmoid 
dynamics with and without a guide field.



iPIC3D
• i = implicit (discretization in time of 

governing equations).

• PIC = Particle-in-Cell method used for 
simulation of collision-less plasmas.

• 3D = geometry (we have version for 2D 
geometry).



Open-Source Code

• available at https://github.com/CmPA/iPic3D .

https://github.com/CmPA/iPic3D


Support for iPIC3D development

• iPIC3D development is supported by European Commission 
projects via Exascale Projects:

• EPiGRAM (MPI, PGAS and Communication kernels) 

• SAGE (parallel I/O) 

• INTERTWINE (interoperability of MPI and other 
approaches) 

• Allscale (task-based models)



Users and Applications
• KTH is developer team (algorithms and 

parallelization).

• users at KU Leuven, Uppsala University, 
University of Pisa, University of Colorado.

• Focus on space physics. In particular:

• magnetic reconnection. Rest of this 
presentation.

• Kelvin-Helmholtz instability.

• Interaction of solar wind with small 
magnetic dipoles.

• Spacecraft charging.

• Production runs of iPIC3D provided results 
for more than 40 publications in physics in 
the last two years.

agreement with measurements but rely on assumptions that may not be valid for the plasma flows observed
in the solar wind [61]. Kinetic e↵ects that may not be detected by MHD simulations include di↵usion
instabilities, magnetic reconnection, energy damping and electron runaway, all of which play an important
role in the energy transfer between the solar wind and the planetary environment, one of the main concerns
in space weather research. A fully kinetic approach, where the ions and the electrons are transported as
independent particles, is the best solution to attack the shortcomings of MHD simulations. The Particle-in-
Cell technique, where particles are transported using Newton’s laws and electromagnetic fields are modeled
using a discretization of Maxwell equations on a grid, is a powerful tool, but very CPU-intensive. To study
the global scale interactions presented in this section, it is necessary to use implicit numerical methods on
massively parallel computers.

Di↵erent authors have previously performed simulations of the kinetic phenomena in planetary magne-
tospheres. Omidi et al. [62] performed simulations on a Mercury-size magnetosphere using a hybrid code,
where ions were treated as particles and electrons were considered a fluid. Cai et al. [63] used an explicit
PIC code to perform simulations of a 3D magnetosphere. In the first case, the resolution of the electron
kinetic scales was avoided, and in the second case, the physical parameters used were strong enough to
avoid numerical instabilities of the explicit PIC code. The simulations presented in this section solve the
global interaction at the electron, ion and planetary scales with physical parameters closer to nature. The
preliminary simulations discussed in this section were performed using the resources from the Tier-1 cluster
in the Flemish Supercomputer Center (VSC) and the Curie and Fermi supercomputers from the PRACE
infrastructure. Computations were performed using 512 to 4096 processors. Thanks to a new PRACE grant,
we are planning to perform in the near future simulations using up to 100000 cores.

The numerical experiment shown in Fig. 9 is composed of a two-dimensional domain discretized with a
cartesian grid with a spatial resolution of�x = �y = 0.06325d

i

. The total length of the box is L
x

= 64.768d
i

in the x direction and L

y

= 36.432d
i

in the y direction. A total of N = 1024⇥576 = 589824 cells were used,
each one of which contained 50 particles at the initialization of the simulations, for a total of N

p

= 29491200
particles.

(a) Simulation domain with magnetic field lines. (b) Zoom on the near-planet environment and magnetic field
lines in the magnetosphere.

Figure 9: Electron concentration for the solar wind - magnetosphere simulation and magnetic field lines.
Distance scales are given in ion inertial lengths d

i

.

A particle-absorbing sphere is located at (x
c

, y

c

) = (L
y

/2, L
y

/2), and a dipolar magnetic field is imposed
at the same location. This field is superimposed on a southward Interplanetary Magnetic Field (IMF) of a
strength of BIMF ⇡ 100 nT.

At each iteration, particles reaching the right boundary are eliminated from the simulation (outflow
condition), and in the remaining boundaries new particles are injected with a drift velocity in the x direction
(inflow condition) using a Maxwellian distribution.

Boundary fields are fixed so as to impose a southward IMF and a consistent solar wind velocity of
V

sw

/c = 0.015, where c is the light speed. Di↵erent thermal velocities are imposed in the ions and electrons
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Facts About iPIC3D
• C++ code. 

• approx 20,000 lines of code. 

• parallel with 3D domain decomposition and MPI (C 
bindings). 

• library in use: HDF5. 

• post-processing codes in Python, Matlab, IDL. 

• OpenMP, OmPSs, OpenACC.

• Hypre/PETSc library.

• Fully implicit
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PIC Method Governing Equations

particles with label p. The computational particles represent small elements of the

phase space with a finite size and a localized velocity. Each computational particle is

characterized by a fixed shape function S, and by two parameters: the computational

particle position xp and velocity vp. Thus the distribution function fs can be written

as:

fs(x,v, t) =
NsX

p=1

S(x� xp)S(y � yp)S(z � zp)�(v � vp), (2.1)

where � is the Dirac’s delta. The shape function S is symmetric, and has a unitary

integral by definition. It is typically chosen as a b-spline function of order ` in each

direction [35]. If�x is the grid spacing in the x direction, the shape function is defined

as S(x� xp) = bl((x� xp)/�x), and similarly in the other directions. The choice of

the first order b-splines as shape functions, leads to the so-called Cloud-in-Cell (CIC)

Particle-in-Cell scheme [15]. Because of the linearity of Equation 2.1, the evolution of

each superparticle p is described by the Vlasov equation also. Substituting Equation

2.1 in the Vlasov Equation 1.1, the equations for the evolution of the computational

particles positions and velocities, xp and vp, are derived:

8
><

>:

dx
p

dt
= vp

dv
p

dt
= q

s

m
s

⇣
Ep +

v

p

⇥B

p

c

⌘
.

(2.2)

These equations of motion are simple ODEs. There are many algorithms to solve such

equations in literature [36; 37]. These equations of motion can be solved using explicit

or implicit methods. An explicit particle mover expresses directly the new position

and velocity using values known from the previous time step, without requiring any

iteration for the solution. A commonly used ODE solver is the leap-frog algorithm,

known in the Molecular Dynamics (MD) community as the Verlet algorithm [37].

The average electric and magnetic fields acting on a computational particle, Ep

and Bp in Equation 2.2, are defined as the integral of the the shape function, and of
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the electromagnetic field over the computational domain V ,

Ep =

Z

V

E(x)S(x� xp)dx Bp =

Z

V

B(x)S(x� xp)dx. (2.3)

Another important characteristic of the Particle-in-Cell algorithm is the use of

a grid to solve the Maxwell’s equations. The Maxwell’s equations are solved on a

grid. The interpolation functions W (xg �xp) are introduced to carry the information

between the particles and the grid:

W (x� xp) =

Z 1

�1
S(x� xp)b0

✓
x� xp

�x

◆
dx = b1(x� xp)/�x, (2.4)

where the general property of the b-splines bl+1(⇠) =
R
bl(⇠0)b0(⇠ � ⇠

0)d⇠0 is used

[35]. The electric and magnetic fields acting on the particles of Equation 2.3, can be

expressed more conveniently with the use of the interpolation functions, as:

Ep =
X

g

EgW (x� xp) Bp =
X

g

BgW (x� xp), (2.5)

where the cells are labelled with a single index g, and the field values in each cell are

Eg and Bg. In addition, the moments of the distribution function, ⇢ng , J
n
g and ⇧n

g (the

pressure tensor), can be obtained easily by iterating over the Ns particles of the ns

species:

{⇢n,Jn
,⇧n}g =

n
sX

s

N
sX

p

qs{1,vn
p ,v

n
pv

n
p}W (x� xn

p ) (2.6)

Once the field sources are known by interpolation, the Maxwell’s equations can

be solved: 8
><

>:

r⇥ E = �1
c
@B
@t

r⇥B = 1
c
@E
@t

+ 4⇡
c
J.

(2.7)

Many numerical techniques have been developed to discretize and solve Equations

2.7 on the grid. They include the Predictor-Corrector methods (Upwind method,

Leapfrog scheme, Lax-Wendro↵ scheme), the implicit method, and the operator split-

ting method [22].
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the number of computational particles is just a small fraction of the number of the real particles in the system, the
reconstruction of distribution function is statistically noisy. A number of numerical techniques have been studied to
address this problem. For instance in iPIC3D, the computational particles have different statistical weights to provide
a good statistical description of the tails of the distribution function [8]. Other techniques include the δ–f PIC [33] and
the semi-lagrangian method [32].

The PIC approach is one of the most used numerical method for the solution of the Vlasov–Maxwell system [2,13]
because of its capacity to deal with three-dimensional configuration and its implementation simplicity. In the PIC
method, the distribution function of each plasma species s of Eq. (1) is described as collection of Ns computational
particles with label p. The computational particles represent small elements of phase space with finite size and local-
ized velocity. Each computational particle is characterized by a fixed shape function S and by two parameters, the
superparticle position xp and velocity vp. Thus the distribution function fs can be written as:

fs(x, v, t) =
Ns∑

p=1

S(x − xp)S(y − yp)S(z − zp)δ(v − vp) (5)

where δ is Dirac’s delta. The shape function S is symmetric and has a unitary integral by definition. It is typically
chosen as a b-spline function of order ℓ [5] in each direction. If #x is the grid spacing in the x-direction, the shape
function is defined as S(x − xp) = bl((x − xp)/#x) and similarly in the other directions. The choice of the first order
b-splines as shape functions, leads to the so-called Cloud-in-Cell (CIC) PIC scheme [13]. Because of the linearity
of Eq. (5), the evolution of each superparticle p is described by the Vlasov equation also. Substituting Eq. (5) in the
Vlasov Eq. (1), the equations for the evolution of the computational particles parameters xp and vp are derived:

dxp

dt
= vp

dvp

dt
= qs

ms

(
Ep + vp × Bp

c

)
(6)

The average electric and magnetic fields acting on a computational particle, Ep and Bp are defined as the integral of
the shape function and of the electromagnetic field over the computational domain V ,

Ep =
∫

V
E(x)S(x − xp)dx Bp =

∫

V
B(x)S(x − xp)dx (7)

Another important characteristic of the PIC algorithm is the use of a grid to solve the Maxwell’s equations. In the
PIC method the Maxwell’s equations are solved on a grid and interpolation functions W(xg − xp) to carry information
between particles and grid are introduced:

W(x − xp) =
∫ ∞

−∞
S(x − xp)b0

(
x − xp

#x

)
dx = b1(x − xp)

#x
(8)

where the general property of the b-splines bl+1(ξ) =
∫

bl(ξ′)b0(ξ − ξ′)dξ′ is used [5]. The electric and magnetic fields
acting on the particles of Eq. (7) can be expressed more conveniently with the use of the interpolation functions, as:

Ep =
∑

g

EgW(x − xp) Bp =
∑

g

BgW(x − xp) (9)

where the cells are labelled with a single index g and the field values in each cell are Eg and Bg. In addition, the
moments of the distribution function ρn

g, Jn
g and Πn

g (the pressure tensor), can be obtained easily by iterating over the
Ns particles of the ns species:

{ρn, Jn, Πn}g =
ns∑

s

Ns∑

p

qs{1, vn
p, vn

pvn
p}W(x − xn

p) (10)

In summary, Fig. 1 represents the four steps required for solving numerically the Vlasov–Maxwell system: the equations
of motion (Eq. (6)) are solved to advance the computational particles positions and velocities. The moments are then
calculated by interpolation from the new computational particles position and velocity, using Eq. (10). Maxwell’s
equations are solved next and the electromagnetic fields acting on the particle are obtained from Eq. (9) by interpolation.
The PIC code integrates explicitly in time the governing equations, Maxwell’s equations need only the sources from

The governing equations for the fluid-kinetic PIC solver are the multi-
fluid equations, Maxwell’s equations and particle equations of motion. The
multi-fluid equations and Maxwell’s equations are solved on the grid, while
the equation of motion are solved for each computational particle.

The fluid continuity and momentum equations for the species s are (here
and thereafter in CGS units):

⇢
@⇢

s

/@t+r · J
s

= 0
@J

s

/@t = (q/m)
s

(⇢
s

E+ (J
s

⇥B)/c�rT
s

)
(1)

where ⇢
s

and J

s

are respectively the charge and current density for the species
s. Species can represent electron, and ions of di↵erent kinds (protons, Helium
nuclei,...). T

s

= J

s

J

s

/⇢

s

+ p

s

and p

s

are respectively the stress and pressure
tensors. E and B are the electric and magnetic fields, and c is the speed of
light in vacuum. In this work, we do not include an equation for energy con-
servation, but we provide a closure equation for calculating the stress tensor
with computational particles. In the next subsection, a technique to evaluate
the stress tensor by computational particles is described in detail.

Together with the multi-fluid equations, the Maxwell’s equations are
solved. The evolution of the electric and magnetic fields is determined by
solving the Maxwell’s equations:

8
>><

>>:

r · E = 4⇡⇢
r ·B = 0
1/c @E/@t = r⇥B� 4⇡/cJ
1/c @B/@t = �r⇥ E,

(2)

The fluid and Maxwell’s equations are coupled as the charge an current
densities depend on the electric and magnetic field (Eq. 1) and vice-versa the
electromagnetic field depends on charge an current densities (Eq. 2).

2.1. Particle Closure Equation

Di↵erent closure equations can be provided to calculate the stress tensor
T in Eq. 1 [1]. In this work, we intend to retain the kinetic e↵ects by
calculating the stress tensor using the computational particles of the PIC
method. Each computational particle is characterized by a position x

p

and

5

Eg,Bg,Jg,ϱp

xp,vp, Ep, Bp 

W
W

W

W



iPIC3D Uniqueness

• The vast majority of production PIC codes uses 
explicit time integration, while iPIC3D uses 
implicit time integration.

• The implicit time integration allows us to use 
time steps and grid spacings that are typically 
order 10 larger than time steps and grid 
spacings used in explicit PIC codes. Stability is 
achieved by numerical damping of the 
unresolved waves.



Moment-Implicit Method
• iPIC3D uses a semi-implicit PIC method, called “moment-implicit 

method”. This method makes an implicit formulation of Maxwell’s 
equation explicit by making a Taylor expansion of the 
interpolation functions.

• The moment implicit PIC method has been developed by Mason, 
Brackbill, Forslund at LANL at the beginning of 80s. There are 
different formulations. The details of the formulation (implicit 
Maxwell Solver) used in iPIC3D are presented in two reference 
papers:

• Markidis, Stefano, and Giovanni Lapenta. "Multi-scale simulations of plasma 
with iPIC3D." Mathematics and Computers in Simulation 80, no. 7 (2010): 
1509-1519.

• Peng, Ivy Bo, et al. "The Formation of a Magnetosphere with Implicit 
Particle-in-Cell Simulations." Procedia Computer Science 51 (2015): 
1178-1187.



Implicit Discretization  and 2nd order Formulation 
of Maxwell’s Equations  

3.1. Time Discretization

Both fluid and Maxwell’s equations (Eqs. 1, 2) are discretized implicitly in
time and solved concurrently in the fluid-Maxwell solver. The fluid equations
are discretized in time as follows:

(
⇢

n+1
s

� ⇢

n

s

+�tr · Jn+1/2
s

= 0

J

n+1
s

� J

n

s

= �t(q/m)
s

(⇢n
s

E

n+✓ + (Jn+1/2
s

⇥B

n)/c�rT n

s

)
(8)

where n + 1 and n are the time levels, and ✓ is the de-centering parameter
that can be chosen between 0.5 and 1.0. The quantity E

n+✓ is defined as:

E

n+✓ = ✓E

n+1 + (1� ✓)En (9)

The term J

n+1/2
s

is defined as time average (Jn+1
s

+J

n

s

)/2. The Ampere’s and
Faraday’s laws are discretized implicitly in time:

⇢
c✓�tr⇥ E

n+✓ +B

n+1 �B

n = 0,
c✓�tr⇥B

n+✓ � (En+1 � E

n) = 4⇡✓�tJ

n+1/2 . (10)

Taking the curl of Faraday’s law allows to eliminate Bn+✓ and recover an
expression for En+✓:

(c✓�t)2r⇥r⇥ E

n+✓ + E

n+1 � E

n = (✓�t)(cr⇥B

n � 4⇡Jn+1/2) (11)

Using the vector identity r⇥r = rr ·�r2, and the Gauss’ law r ·En+✓ =
4⇡⇢n+1/2 = 4⇡(⇢n+1 + ⇢

n)/2, we obtain:

E

n+✓ � (c✓�t)2r2
E

n+✓ = E

n + c✓�t(r⇥B

n � 4⇡(Jn+1/2 + c✓�tr⇢

n+1/2)).
(12)

This equation is solved to calculate E

n+✓.

In summary, the unknowns of the problem are E

n+✓, ⇢

n+1
s

, and J

n+1
s

and the following equations are solved concurrently on the grid in the fluid-
Maxwell solver in the kinetic-fluid PIC method:
8
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:

⇢

n+1
s

� ⇢

n

s

+�tr · Jn+1/2
s

= 0

J

n+1
s

� J

n

s

= (q/m)
s

�t(⇢n
s

E

n+✓ + (Jn+1/2
s

⇥B

n)/c�rT n

s

)
E

n+✓ � (c✓�t)2r2
E

n+✓ = E

n + c✓�t(r⇥B

n � 4⇡(Jn+1/2 + c✓�tr⇢

n+1/2))
(13)
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Once the electric field E

n+✓ is calculated, the magnetic field is advanced in
time by solving the discretized Faradays law:
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When ✓ = 0.5 the fluid-Maxwell solver method results second order accurate
in time.
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This time discretization of the particle equation of motion is second order
accurate in time [25].

3.2. Spatial Discretization
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the  implicit moment method
finds approximate values for 
these quantities 
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The charge and current density values are extrapolated using a Taylor expansion and are expressed in terms of the
present and (unknown) future electromagnetic fields. Once the new values for En+1 and Bn+1 are known by solving the
Maxwell’s equation, the particles are moved with the predicted fields. The approximated implicit PIC, used in iPIC3D,
is based on a Taylor expansion of the interpolation function W(x − xn+1

p ) [34,20]. The Taylor expansion is completed
around the particle position at the previous time step xn

p:

W(x − xn+1
p ) ≈ W(x − xn

p) + (xn − xn+1
p )∇W(x − xn

p) + · · · (13)

W(x − xn+1
p ) ≈ W(x − xn

p) − v̄p!t∇W(x − xn
p) + · · · (14)

where v̄p is the particle average velocity, defined as (vn
p + vn+1

p )/2. If v̄p is expressed as function of En+1 and the
extrapolated values for ρn+1 and Jn+1/2 values are inserted in Eq. (11), after a series of algebraic manipulations and
keeping terms up to the second order in !t [34], an equation for En+1 is obtained:

(I + χn) · En+1 − (c!t)2(∇2En+1 + ∇∇ · (χn · En+1)) = En + c!t

(
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c
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(15)

where I is the identity matrix and χ is called implicit susceptibility for similarity of Eq. (15) to the field equation in
dielectric media, and it is defined as:
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R("s!t/2)·, is a rotation transformation and it is defined as:
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.

"s ≡ qs/msBn/c, and ωps =
√

(4πρsqs)/ms are the cyclotron frequency vector and the plasma frequency for species
s. The introduction of the implicit susceptibility χ is the main characteristic of implicit Maxwell’s solver. Eq. (16)
defines the implicit susceptibility as combination of a scaling and a rotation transformation on the future value of the
electric field. The effect of scaling by the factor of 1/2(ωps!t)2 is to reduce the electric field component, due the fast
electrons oscillations that cannot be resolved by the large time step. The rotation transformation R("s(!t/2)) includes
the effect of the particle Larmor rotation induced by the magnetic field. After the field equation is solved, the electric
field must be corrected to ensure that the charge density continuity equation is satisfied [2]:

Ẽn+1 = En+1 − ∇Φ ∇2Φ = ∇ · En+1 − 4πρn (18)

4.1. Spatial differentiation

In iPIC3D, the Maxwell’s equations are differenced in space on a uniform Cartesian grid. The electric field En,n+1,
the current densities Jn,Ĵ

n
, and the implicit susceptibility χn are evaluated at the vertices of the grid, while the magnetic

field Bn,n+1 and charge densities ρn, ρ̂n are calculated at the centers of the cells. The simple box scheme is used for
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Ĵ
n
)

− (c!t)2∇4πρ̂n

(15)

where I is the identity matrix and χ is called implicit susceptibility for similarity of Eq. (15) to the field equation in
dielectric media, and it is defined as:

χ· =
∑

ns

χs· , χn
s · ≡ 1

2
(ωps!t)2R

(
Ωs

!t

2

)
· (16)

for convenience the ρ̂n and Ĵ
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n =

ns∑

s

R

(
Ωs

!t

2

)
·
(

Jn
s − !t

2
∇Πn

s

)
(17)

R("s!t/2)·, is a rotation transformation and it is defined as:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
(

Ωsx

!t

2

)2

Ωsz

!t

2
+ ΩsxΩsy

(
!t

2

)2

−Ωsy

!t

2
+ ΩsxΩsz

(
!t

2

)2

−Ωsz

!t

2
+ ΩsxΩsy

(
!t

2

)2

1 +
(

Ωsy

!t

2

)2

Ωsx

!t

2
+ ΩsyΩsz

(
!t

2

)2

Ωsy

!t

2
+ ΩsxΩsz

(
!t

2

)2

−Ωsx

!t

2
+ ΩsyΩsz

(
!t

2

)2

1 +
(

Ωsz

!t

2

)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

"s ≡ qs/msBn/c, and ωps =
√

(4πρsqs)/ms are the cyclotron frequency vector and the plasma frequency for species
s. The introduction of the implicit susceptibility χ is the main characteristic of implicit Maxwell’s solver. Eq. (16)
defines the implicit susceptibility as combination of a scaling and a rotation transformation on the future value of the
electric field. The effect of scaling by the factor of 1/2(ωps!t)2 is to reduce the electric field component, due the fast
electrons oscillations that cannot be resolved by the large time step. The rotation transformation R("s(!t/2)) includes
the effect of the particle Larmor rotation induced by the magnetic field. After the field equation is solved, the electric
field must be corrected to ensure that the charge density continuity equation is satisfied [2]:
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keeping terms up to the second order in !t [34], an equation for En+1 is obtained:
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"s ≡ qs/msBn/c, and ωps =
√

(4πρsqs)/ms are the cyclotron frequency vector and the plasma frequency for species
s. The introduction of the implicit susceptibility χ is the main characteristic of implicit Maxwell’s solver. Eq. (16)
defines the implicit susceptibility as combination of a scaling and a rotation transformation on the future value of the
electric field. The effect of scaling by the factor of 1/2(ωps!t)2 is to reduce the electric field component, due the fast
electrons oscillations that cannot be resolved by the large time step. The rotation transformation R("s(!t/2)) includes
the effect of the particle Larmor rotation induced by the magnetic field. After the field equation is solved, the electric
field must be corrected to ensure that the charge density continuity equation is satisfied [2]:

Ẽn+1 = En+1 − ∇Φ ∇2Φ = ∇ · En+1 − 4πρn (18)

4.1. Spatial differentiation

In iPIC3D, the Maxwell’s equations are differenced in space on a uniform Cartesian grid. The electric field En,n+1,
the current densities Jn,Ĵ

n
, and the implicit susceptibility χn are evaluated at the vertices of the grid, while the magnetic

field Bn,n+1 and charge densities ρn, ρ̂n are calculated at the centers of the cells. The simple box scheme is used for

the Maxwell’s solver is 
now explicit
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• is solved with a matrix-free GMRes solver on a 
uniform Cartesian grid.

• particle mover remains implicit. The equations of 
motion are solved with a predictor-corrector 
technique.

• If compared to explicit PIC codes, iPIC3D solves a 
linear system (instead of a simply update of values) 
and uses auxiliary variables (both for particles and 
fields).

S. Markidis et al. / Mathematics and Computers in Simulation 80 (2010) 1509–1519 1513

The charge and current density values are extrapolated using a Taylor expansion and are expressed in terms of the
present and (unknown) future electromagnetic fields. Once the new values for En+1 and Bn+1 are known by solving the
Maxwell’s equation, the particles are moved with the predicted fields. The approximated implicit PIC, used in iPIC3D,
is based on a Taylor expansion of the interpolation function W(x − xn+1

p ) [34,20]. The Taylor expansion is completed
around the particle position at the previous time step xn

p:

W(x − xn+1
p ) ≈ W(x − xn

p) + (xn − xn+1
p )∇W(x − xn

p) + · · · (13)

W(x − xn+1
p ) ≈ W(x − xn

p) − v̄p!t∇W(x − xn
p) + · · · (14)

where v̄p is the particle average velocity, defined as (vn
p + vn+1

p )/2. If v̄p is expressed as function of En+1 and the
extrapolated values for ρn+1 and Jn+1/2 values are inserted in Eq. (11), after a series of algebraic manipulations and
keeping terms up to the second order in !t [34], an equation for En+1 is obtained:

(I + χn) · En+1 − (c!t)2(∇2En+1 + ∇∇ · (χn · En+1)) = En + c!t

(
∇ × Bn − 4π

c
Ĵ
n
)

− (c!t)2∇4πρ̂n

(15)

where I is the identity matrix and χ is called implicit susceptibility for similarity of Eq. (15) to the field equation in
dielectric media, and it is defined as:

χ· =
∑

ns

χs· , χn
s · ≡ 1

2
(ωps!t)2R

(
Ωs

!t

2

)
· (16)

for convenience the ρ̂n and Ĵ
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n
, and the implicit susceptibility χn are evaluated at the vertices of the grid, while the magnetic

field Bn,n+1 and charge densities ρn, ρ̂n are calculated at the centers of the cells. The simple box scheme is used for



Scaling Tests

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

32 128 512 2048 15360 24576 

1 1.045 1.09 1.125 
1.19 1.22 

1 1 1 1 1 1 

Ti
m

e 
pe

r 
co

re
 

Number of Cores 

Performances of iPIC3D on Curie  

iPIC3D 
Ideal Scaling 

Weak Scaling on Curie (Bull) Strong Scaling on Fermi (BlueGene/Q)

iPIC3D scales on a variety of 
computing platforms (83% 
relative parallel efficiency on 
20,000 cores).

Weak Scaling on Pleiades (SGI)



Fluid-Kinetic Solver in iPIC3D
The governing equations for the fluid-kinetic PIC solver are the multi-

fluid equations, Maxwell’s equations and particle equations of motion. The
multi-fluid equations and Maxwell’s equations are solved on the grid, while
the equation of motion are solved for each computational particle.

The fluid continuity and momentum equations for the species s are (here
and thereafter in CGS units):

⇢
@⇢

s

/@t+r · J
s

= 0
@J

s

/@t = (q/m)
s

(⇢
s

E+ (J
s

⇥B)/c�rT
s

)
(1)

where ⇢
s

and J

s

are respectively the charge and current density for the species
s. Species can represent electron, and ions of di↵erent kinds (protons, Helium
nuclei,...). T

s

= J

s

J

s

/⇢

s

+ p

s

and p

s

are respectively the stress and pressure
tensors. E and B are the electric and magnetic fields, and c is the speed of
light in vacuum. In this work, we do not include an equation for energy con-
servation, but we provide a closure equation for calculating the stress tensor
with computational particles. In the next subsection, a technique to evaluate
the stress tensor by computational particles is described in detail.

Together with the multi-fluid equations, the Maxwell’s equations are
solved. The evolution of the electric and magnetic fields is determined by
solving the Maxwell’s equations:

8
>><

>>:

r · E = 4⇡⇢
r ·B = 0
1/c @E/@t = r⇥B� 4⇡/cJ
1/c @B/@t = �r⇥ E,

(2)

The fluid and Maxwell’s equations are coupled as the charge an current
densities depend on the electric and magnetic field (Eq. 1) and vice-versa the
electromagnetic field depends on charge an current densities (Eq. 2).

2.1. Particle Closure Equation

Di↵erent closure equations can be provided to calculate the stress tensor
T in Eq. 1 [1]. In this work, we intend to retain the kinetic e↵ects by
calculating the stress tensor using the computational particles of the PIC
method. Each computational particle is characterized by a position x

p

and
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3.1. Time Discretization

Both fluid and Maxwell’s equations (Eqs. 1, 2) are discretized implicitly in
time and solved concurrently in the fluid-Maxwell solver. The fluid equations
are discretized in time as follows:

(
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E

n+✓ + (Jn+1/2
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n)/c�rT n

s

)
(8)

where n + 1 and n are the time levels, and ✓ is the de-centering parameter
that can be chosen between 0.5 and 1.0. The quantity E

n+✓ is defined as:

E

n+✓ = ✓E

n+1 + (1� ✓)En (9)

The term J

n+1/2
s

is defined as time average (Jn+1
s

+J

n

s

)/2. The Ampere’s and
Faraday’s laws are discretized implicitly in time:
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n = 0,
c✓�tr⇥B

n+✓ � (En+1 � E

n) = 4⇡✓�tJ

n+1/2 . (10)

Taking the curl of Faraday’s law allows to eliminate Bn+✓ and recover an
expression for En+✓:

(c✓�t)2r⇥r⇥ E

n+✓ + E

n+1 � E

n = (✓�t)(cr⇥B

n � 4⇡Jn+1/2) (11)

Using the vector identity r⇥r = rr ·�r2, and the Gauss’ law r ·En+✓ =
4⇡⇢n+1/2 = 4⇡(⇢n+1 + ⇢

n)/2, we obtain:

E
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E

n+✓ = E

n + c✓�t(r⇥B

n � 4⇡(Jn+1/2 + c✓�tr⇢

n+1/2)).
(12)

This equation is solved to calculate E

n+✓.

In summary, the unknowns of the problem are E

n+✓, ⇢

n+1
s

, and J

n+1
s

and the following equations are solved concurrently on the grid in the fluid-
Maxwell solver in the kinetic-fluid PIC method:
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The fluid-kinetic solver calculates the implicit terms by 
adding to

the first two moment equations

an use particles to close the fluid equations

a velocity v

p

, whose evolution is described by the equation of motion:
⇢

dx

p

/dt = v

p

dv
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) ,
(3)

where q
s

/m

s

are the charge to mass ratio of the species s. E
p

, and B

p

are the
electric and magnetic fields acting on the particle p and they are calculated
by interpolation from E

g

and B

g

, the values of the electric and magnetic
field on the N

g

grid points, through the use of the interpolation function
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� x
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Typically, the Cloud-in-Cell interpolation functions [8, 9] are used:
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(5)

In the PIC method the charge and current densities (⇢,J) defined on the grid
are calculated with interpolation functions:

{⇢
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,J
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}
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g

� x
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). (6)

In the fluid-kinetic PIC method, the interpolation functions are used to cal-
culate the stress tensor T

s

also. The closure equation for the stress tensor is
provided by particles in this way:

(T
s

)
g

=

NpX

p

q

s

v

p

v

p

W (x
g

� x

p

). (7)

The idea of using computational particles to provide a closure equation is not
new, but it has been previously introduced in semi-implicit PIC methods [22,
18] and in the fluid-particle model [20, 21].

3. Discretization of Governing Equations

The fluid continuity and momentum equations together with the second
order formulation of Maxwells equations are solved concurrently using the
finite di↵erence box scheme [23]. We present the discretization in time and
in space and a discussion of the numerical stability of the fluid-kinetic PIC
method in the following subsections.
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The fluid-kinetic solver computes the linear system:

The stress tensor in momentum equation:

3.1. Time Discretization

Both fluid and Maxwell’s equations (Eqs. 1, 2) are discretized implicitly in
time and solved concurrently in the fluid-Maxwell solver. The fluid equations
are discretized in time as follows:

(
⇢

n+1
s

� ⇢

n

s

+�tr · Jn+1/2
s

= 0

J

n+1
s

� J

n

s

= �t(q/m)
s

(⇢n
s

E

n+✓ + (Jn+1/2
s

⇥B

n)/c�rT n

s

)
(8)

where n + 1 and n are the time levels, and ✓ is the de-centering parameter
that can be chosen between 0.5 and 1.0. The quantity E

n+✓ is defined as:

E

n+✓ = ✓E

n+1 + (1� ✓)En (9)

The term J

n+1/2
s

is defined as time average (Jn+1
s

+J

n

s

)/2. The Ampere’s and
Faraday’s laws are discretized implicitly in time:

⇢
c✓�tr⇥ E

n+✓ +B

n+1 �B

n = 0,
c✓�tr⇥B

n+✓ � (En+1 � E

n) = 4⇡✓�tJ

n+1/2 . (10)

Taking the curl of Faraday’s law allows to eliminate Bn+✓ and recover an
expression for En+✓:

(c✓�t)2r⇥r⇥ E

n+✓ + E

n+1 � E

n = (✓�t)(cr⇥B

n � 4⇡Jn+1/2) (11)

Using the vector identity r⇥r = rr ·�r2, and the Gauss’ law r ·En+✓ =
4⇡⇢n+1/2 = 4⇡(⇢n+1 + ⇢

n)/2, we obtain:

E

n+✓ � (c✓�t)2r2
E

n+✓ = E

n + c✓�t(r⇥B

n � 4⇡(Jn+1/2 + c✓�tr⇢

n+1/2)).
(12)

This equation is solved to calculate E

n+✓.

In summary, the unknowns of the problem are E

n+✓, ⇢

n+1
s

, and J

n+1
s

and the following equations are solved concurrently on the grid in the fluid-
Maxwell solver in the kinetic-fluid PIC method:
8
<

:

⇢

n+1
s

� ⇢

n

s

+�tr · Jn+1/2
s

= 0

J

n+1
s

� J

n

s

= (q/m)
s

�t(⇢n
s

E

n+✓ + (Jn+1/2
s

⇥B

n)/c�rT n

s

)
E

n+✓ � (c✓�t)2r2
E

n+✓ = E

n + c✓�t(r⇥B

n � 4⇡(Jn+1/2 + c✓�tr⇢

n+1/2))
(13)

7

is calculated at time level n instead of n+1/2.

The fluid-kinetic solver can be made “fully implicit” by 
using the kinetic enslavement technique in the solver.



Results of Fluid-Kinetic Solver

Figure 7: Contour-plots of the di↵erent components of electromagnetic fields at time

⌦ci t = 11.7 in the two-dimensional magnetic reconnection simulation.

evolution of magnetic reconnection. In particular, instabilities in the third
direction arise. For instance, the presence of waves (identified as lower-hybrid
waves) is clear in the isosurface plot of the z component of the electric field
in Figure 9.

Figure 10 shows the three dimensional structure of the magnetic field
represented in grey lines. A contour plot of the electron density on the plane
z = 0 is superimposed in the plot.

These three-dimensional simulation results are in good agreement with
the results of previous three-dimensional simulations [33, 34].

6. Performance Results

The performance of the fluid-kinetic PIC solver has been evaluated by
running the two-dimensional reconnection problem presented in the previous
section. The tests have been completed on a 1.7 GHz Intel Core i5 with 4
GB RAM memory running on Mac OS X 10.8.2 using the gcc 4.2 compiler.

To study the e↵ect of the simulation time step on the numerical perfor-
mance, three time step values were chosen: �t = 2.5 !
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Figure 5: Two-dimensional spectrum of the ion density field. The frequency omega is

normalized to the ion cyclotron frequency ⌦ci to ease the reading. The perpendicular

wavevector kperp is normalized to the ion gyro-radius ri.

The computational particles are uniformly distributed in space and have a
Maxwellian distribution in velocity with thermal velocities 0.045 c (electrons)
and 0.0126 c (ions). The ion charge to mass ratio is 64 and 500 computa-
tional particles per cell are used. The grid consists of 128⇥64 grid cells. The
simulation box is L

x

⇥L

y

= 20 d

i

⇥ 10 d

i

. Periodic boundary conditions are
applied in the x direction, while perfect conductor for the electromagnetic
field and reflecting boundary conditions are applied in the y direction. The
time step is 2.5!�1

p

and de-centering parameter ✓ = 1.0.
Figure 7 shows the di↵erent components of the electromagnetic field at

time ⌦
ci

t = 11.7. The E
z

component is called reconnection electric field and
it is related to the speed reconnection occurs (reconnection rate). Its value
at the center of the simulation box is approximately 0.3 B0VA

/c (V
A

is the
Alfvén velocity) and it is an agreement with the simulation results reported
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Figure 10: Magnetic field lines and contour plot of the electron density ne on the plane

z = 0 at time ⌦ci t = 11.7.

all the simulations. An analysis of the computational e�ciency of the mover
is presented in Ref. [25].

As in other semi-implicit methods, the solver for computing the electro-
magnetic fields constitutes a not negligible part of whole computational cost
as opposed to explicit PIC codes where the Maxwell solver computation is
negligible with respect to the mover computational cost. Figure 13 shows the
percentage of computational cost of the di↵erent stages of the fluid-kinetic
PIC solver varying the solver error tolerance with ✓ = 1.0. Figure 14 shows
the final variation of the total energy in h normalized to the initial total
energy. It is clear from Figure 14 that the numerical damping is stronger in
the case of ✓ = 1.0 and decreases by reducing the time step as predicted by
the numerical dispersion relation [22].

Finally, the performance of the fluid-Maxwell solver has been compared to
the performance of the implicit moment Maxwell solver used in the iPIC3D
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Figure 9: Isosurfaces of the z component of the electric field and quiver plot of the magnetic

field B at time ⌦ci t = 8.77. The plot shows features that are present only in three

dimensional simulation of magnetic reconnection, such as the presence of the lower-hybrid

waves propagating in the z direction.

Figure 11 shows the average number of GMRes restarts and iterations
varying the time step �t = 2.5 !

�1
p

, 1.25 !

�1
p

, 0.25 !

�1
p

, and the solver error
tolerances ✏

r

= 10�3
, 10�4

, 10�5 with ✓ = 1.0. Analyzing the plot, it is
clear that the number of solver restarts and of iterations increases when the
simulation time step increases and the solver error tolerance decreases.

The total execution time of the di↵erent stages of the PIC code (fluid-
Maxwell solver, mover, interpolation) varying the time step and solver toler-
ance is shown in Figure 12. As seen in Figure 11, the number of iterations
and restarts increases when the error tolerance is decreased and the time
step values is increased. Thus, accordingly the computational cost of the
fluid Maxwell solver increases when the error tolerance is decreased and the
time step values is increased. This is clear when analyzing Figure 12. The
mover and interpolation computational costs do not depend on the time step
values since a fixed number of predictor-corrector iterations is set to three for
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Towards Fully Integrated Fluid-PIC simulations

• The fluid-kinetic solver is ideal for coupled fluid-PIC 
simulations in a unified computational framework.

• Example:

Figure 7: Contour-plots of the di↵erent components of electromagnetic fields at time

⌦ci t = 11.7 in the two-dimensional magnetic reconnection simulation.

evolution of magnetic reconnection. In particular, instabilities in the third
direction arise. For instance, the presence of waves (identified as lower-hybrid
waves) is clear in the isosurface plot of the z component of the electric field
in Figure 9.

Figure 10 shows the three dimensional structure of the magnetic field
represented in grey lines. A contour plot of the electron density on the plane
z = 0 is superimposed in the plot.

These three-dimensional simulation results are in good agreement with
the results of previous three-dimensional simulations [33, 34].

6. Performance Results

The performance of the fluid-kinetic PIC solver has been evaluated by
running the two-dimensional reconnection problem presented in the previous
section. The tests have been completed on a 1.7 GHz Intel Core i5 with 4
GB RAM memory running on Mac OS X 10.8.2 using the gcc 4.2 compiler.

To study the e↵ect of the simulation time step on the numerical perfor-
mance, three time step values were chosen: �t = 2.5 !
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electric and magnetic fields acting on the particle p and they are calculated
by interpolation from E
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Typically, the Cloud-in-Cell interpolation functions [8, 9] are used:
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In the PIC method the charge and current densities (⇢,J) defined on the grid
are calculated with interpolation functions:
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In the fluid-kinetic PIC method, the interpolation functions are used to cal-
culate the stress tensor T

s

also. The closure equation for the stress tensor is
provided by particles in this way:
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The idea of using computational particles to provide a closure equation is not
new, but it has been previously introduced in semi-implicit PIC methods [22,
18] and in the fluid-particle model [20, 21].

3. Discretization of Governing Equations

The fluid continuity and momentum equations together with the second
order formulation of Maxwells equations are solved concurrently using the
finite di↵erence box scheme [23]. We present the discretization in time and
in space and a discussion of the numerical stability of the fluid-kinetic PIC
method in the following subsections.

6

The governing equations for the fluid-kinetic PIC solver are the multi-
fluid equations, Maxwell’s equations and particle equations of motion. The
multi-fluid equations and Maxwell’s equations are solved on the grid, while
the equation of motion are solved for each computational particle.

The fluid continuity and momentum equations for the species s are (here
and thereafter in CGS units):

⇢
@⇢

s

/@t+r · J
s

= 0
@J

s

/@t = (q/m)
s

(⇢
s

E+ (J
s

⇥B)/c�rT
s

)
(1)

where ⇢
s

and J

s

are respectively the charge and current density for the species
s. Species can represent electron, and ions of di↵erent kinds (protons, Helium
nuclei,...). T

s

= J

s

J

s

/⇢

s

+ p

s

and p

s

are respectively the stress and pressure
tensors. E and B are the electric and magnetic fields, and c is the speed of
light in vacuum. In this work, we do not include an equation for energy con-
servation, but we provide a closure equation for calculating the stress tensor
with computational particles. In the next subsection, a technique to evaluate
the stress tensor by computational particles is described in detail.

Together with the multi-fluid equations, the Maxwell’s equations are
solved. The evolution of the electric and magnetic fields is determined by
solving the Maxwell’s equations:

8
>><

>>:

r · E = 4⇡⇢
r ·B = 0
1/c @E/@t = r⇥B� 4⇡/cJ
1/c @B/@t = �r⇥ E,

(2)

The fluid and Maxwell’s equations are coupled as the charge an current
densities depend on the electric and magnetic field (Eq. 1) and vice-versa the
electromagnetic field depends on charge an current densities (Eq. 2).

2.1. Particle Closure Equation

Di↵erent closure equations can be provided to calculate the stress tensor
T in Eq. 1 [1]. In this work, we intend to retain the kinetic e↵ects by
calculating the stress tensor using the computational particles of the PIC
method. Each computational particle is characterized by a position x

p

and
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fluid

fluid

kinetic

Only one solver is in use. Depending on the region of 
space, the stress tensor can be calculated with particles 
or with a closure equations.



Coupling of iPIC3D with BATS-R-US and itself
iPIC3D is now available as a library that can be dynamically linked with other 
codes.

Figure 7: Contour-plots of the di↵erent components of electromagnetic fields at time

⌦ci t = 11.7 in the two-dimensional magnetic reconnection simulation.

evolution of magnetic reconnection. In particular, instabilities in the third
direction arise. For instance, the presence of waves (identified as lower-hybrid
waves) is clear in the isosurface plot of the z component of the electric field
in Figure 9.

Figure 10 shows the three dimensional structure of the magnetic field
represented in grey lines. A contour plot of the electron density on the plane
z = 0 is superimposed in the plot.

These three-dimensional simulation results are in good agreement with
the results of previous three-dimensional simulations [33, 34].

6. Performance Results

The performance of the fluid-kinetic PIC solver has been evaluated by
running the two-dimensional reconnection problem presented in the previous
section. The tests have been completed on a 1.7 GHz Intel Core i5 with 4
GB RAM memory running on Mac OS X 10.8.2 using the gcc 4.2 compiler.

To study the e↵ect of the simulation time step on the numerical perfor-
mance, three time step values were chosen: �t = 2.5 !

�1
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, 1.25 !
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, 0.25 !
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Figure 7: Contour-plots of the di↵erent components of electromagnetic fields at time

⌦ci t = 11.7 in the two-dimensional magnetic reconnection simulation.

evolution of magnetic reconnection. In particular, instabilities in the third
direction arise. For instance, the presence of waves (identified as lower-hybrid
waves) is clear in the isosurface plot of the z component of the electric field
in Figure 9.

Figure 10 shows the three dimensional structure of the magnetic field
represented in grey lines. A contour plot of the electron density on the plane
z = 0 is superimposed in the plot.
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the results of previous three-dimensional simulations [33, 34].
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HD iPIC3D

LD iPIC3D

1. BATS-R-US.MHD_step   
2. iPIC3D.CouplerIN (to import data from  BATS-R-US) 
3. iPIC3D. iPIC3D_step 
5. iPIC3D.CoupleOUT (to export data to  BATS-R-US) 

1. LD.iPIC3D_step  
2. HD.iPIC3D_CouplerIN (to import data from  LD) 
3. HD. iPIC3D_step 
5. iPIC3D.CoupleOUT to  BATS-R-US (to export data to  HD) 

Computational cycle Computational cycle

LD = Low Definition (coarse grid)
HD = High Definition (fine grid)
way to provide cheap AMR

Currently, both BATS-R-US and iPIC3D use the 
same computational resources and are executed 
sequentially.



1- Harris Equilibrium in Antiparallel B 
Configuration

• Focus on instabilities affecting the reconnection jet fronts.

• Reference papers:  

• Lapenta, Markidis, Goldman, Newman, “Secondary reconnection 
sites in reconnection-generated flux ropes and reconnection 
fronts”, Nature Physics (2015).

• G.Lapenta, M. Goldman, D. Newman, S. Markidis, A. Divin, 
Electromagnetic energy conversion in downstream fronts from 
three dimensional kinetic reconnection”, POP (2014).

• Vapirev, A. E., G. Lapenta, A. Divin, S. Markidis, P. Henri, M. Goldman, 
and D. Newman.  "Formation of a transient front structure near 
reconnection point in 3-D PIC simulations." JGR (2013).



Reconnection Jets
������������

Dipolarization fronts and interchange 

Dipolarisation front  
showing inteerchange 

Flux rope showing 
deformations 

reconnection jet
fronts

magnetic field lines

outflow
outflow

inflow

Magnetic reconnection is the 
topology reorganization of 
disconnected magnetic regions 
into a new configuration with 
concurrent conversion of 
magnetic energy into plasma 
kinetic energy. 

The magnetic energy is released 
in form of plasma heating and 
acceleration: plasma (inflow 
plasma) drifts toward the region 
where magnetic reconnection 
takes place and expelled from it 
forming the reconnection jets 
(outflow plasma).

We focus now on studying the 
instabilities affecting the 
reconnection jet fronts



Simulation Set-Up

B!

J!

x!

y!

z!
Lx = 40 di
Ly = 15 di
Lz = 10 di
nxc x nyc x nzc = 512 x 192 x 128
Periodic BC in x and z
Perfect conductor BC in y
nb = 0.1 n0

Other parameters are from the GEM 
challenge

Δt = 0.125 ωpi-1

mi/me= 256

Initial Perturbation along the dashed 
line.

presents the evolution of three dimensional guide field mag-
netic reconnection, the cavity and low density ribs formation,
and the presence of bipolar parallel electric field structures in
their proximity. Section III discusses the results and the pos-
sible origins of three-dimensional structure of the cavities.
Finally, Sec. V summarizes the results.

II. SIMULATION SET-UP

Simulations are carried out in a three-dimensional sys-
tem, where a Harris current sheet equilibrium is initially
imposed.25 The z coordinate is taken along the Harris sheet
current, while the x-y plane is the reconnection plane. The x,
y, and z simulation coordinates correspond to !xGSM; zGSM,
and !yGSM coordinates in the Geocentric Solar Magneto-
spheric (GSM) system and to Earth-Sun, North-South, and
dawn-dusk directions in Earth magnetotail.

The plasma density profile is initialized as:

nðyÞ ¼ n0 cosh!2 y! Ly=2

k

! "
þ nb: (1)

The peak density, n0, is the reference density, while the
background density nb ¼ 0:1n0; Lx & Ly & Lz ¼ 20 di & 15 di

&10 di are the simulation box lengths and k ¼ 0:5 di is the
half-width of the current sheet. The ion inertial length is
di ¼ c=xpi, with c the speed of light in vacuum, xpi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pn0e2=mi

p
the ion plasma frequency, e the elementary

charge, and mi the ion mass. The electron mass is me

¼ mi=256.
A magnetic field in the x direction is initialized to satisfy

the Harris equilibrium force balance:

BxðyÞ ¼ B0 tanh
y! Ly=2

k

! "
: (2)

FIG. 1. Volume plot of the electron current density at different times. The initial Harris current sheet breaks in two reconnection jets, moving away from the x
line. The electron current develops filamentary structures along the separatrices at later times.
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VAPIREV ET AL.: DIPOLARIZATION FRONT IN 3-D PIC

Figure 10. Isocontours of the electron density in the XZ plane cut located at half-box length y = Ly/2 at
five successive times.
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Figure 10. Isocontours of the electron density in the XZ plane cut located at half-box length y = Ly/2 at
five successive times.
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Iso-contours of the electron 
density in the XZ plane cut 
located at half-box length y = 
Ly/2.

The instability develops at the 
location of the high density 
gradients and generates typical 
finger signatures of a (Rayleigh-
Taylor-like) interchange 
instability.  The instability wave 
vector (along Z) is 
perpendicular to both the local 
density gradient (along X) and 
the local magnetic field direction 
(along Y), as required for 
electrostatic drift instabilities. 
The instability eventually 
saturates reducing the density 
gradient.



VAPIREV ET AL.: DIPOLARIZATION FRONT IN 3-D PIC

where interchange modes generated plasma flows which
in turn interacted with the current sheet. The interchange
instabilities grew due to the opposite to the direction of

Figure 11. The k-spectrum of the electron velocity Vx,e as
a function of the wavelength !z computed along Z direc-
tion at the location of the unstable front of high density
gradient. The five different times correspond to the times
shown in Figure 10.

flux propagation magnetic field and density gradients. The
authors concluded that some flux structures started to dom-
inate over the rest due to interaction between different
interchange modes, generating return flows, and thus sup-
pressing the development of some of the plasma flow forma-
tions. On the other hand, Figure 7 shows that the magnetic
field By component (Bz in GSM) in the equatorial plane
experiences a slight dip just before the main DF structure
[Sitnov et al., 2009]. Recent PIC simulations [Pritchett
and Coroniti, 2010] suggested that such magnetic field
configuration is likely to develop ballooning/interchange
instability due to the tailward acting gradient of Bz (By in
our notation of iPIC3D coordinates) after reconnection onset
and that a further formation is possible of fast flux structures
propagating Earthward into the inner magnetosphere.

4. Conclusions
[26] In this work a full 3-D particle-in-cell simulation of

collisionless reconnection without a guide field has been
studied using the novel state-of-the-art numerical approach
implemented in the iPIC3D code. The formation and devel-
opment of DFs have been observed with high spatial and
temporal resolution. We observe a fast growth of instabili-
ties in the DF region. The analysis suggests that ballooning/
interchange instability and/or LHDI may play an important
role in the development of the DF. Our simulation shows
that the electron plasma population distribution follows
closely the fine features of the electric field. Both ions and
electron densities however have their peaks pushed toward
the front part of the DF revealing that the DF acts as a plough
on the plasma.

Figure 12. Magnetic field, electric field, and total plasma number density in the XZ plane at !cit = 20.
The regions where finger-like flux structures form are pointed with arrows.
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Spectrum of the electron velocity Vx,e 
as a function of the wavelength  
computed along Z direction at the 
location of the unstable front of high 
density gradient.  The spectrum is 
initially flat. Then the instability peak 
appears (blue line 2) and grows (light 
blue line 3) at the most unstable 
wavelength 1di.  The instability 
eventually saturates (line 4), generating 
disturbances at larger wavelengths 
(line 5).

Given the wavelength value1di, the 
instability is in its short wavelength 
regime, called the kinetic interchange 
instability.

The small wavelength enables to 
decouple electron and ion velocities, 
thus generating an associated Hall 
electric field that can enhance 
anomalous transport along the 
reconnection front.



• Focus on instabilities affecting magnetic 
reconnection separatrices and structure of 
density cavities.

• Motivation: possible signatures of proximity to 
magnetic reconnection sites. 

• Reference papers:

• Markidis, Stefano, Giovanni Lapenta, Andrey Divin, M. Goldman, D. Newman, and Laila 
Andersson. "Three dimensional density cavities in guide field collisionless magnetic 
reconnection." Physics of Plasmas 19 (2012): 032119.

• Divin, Andrey, Giovanni Lapenta, Stefano Markidis, D. L. Newman, and M. V. Goldman. 
"Numerical simulations of separatrix instabilities in collisionless magnetic 
reconnection." Physics of Plasmas 19 (2012): 042110.

2- Harris Equilibrium with a Guide Field



Separatrices and Cavities

x

y

x

current layers in two dimensional particle-in-cell simulations
and in the contourplot on the plane z ¼ Lz=2 in Figure 3.
Figure 4 panel a shows two isosurface plots of the electron
density at time Xcit ¼ 14:5. The electron density is normal-
ized to the background density nb ¼ 0:1n0. The isosurface
ne ¼ 0:65nb (orange color) shows the cavity layer, approxi-
mately 1 di thick; the isosurface ne ¼ 0:4nb (grey color)
reveals that regions with further lower density are embedded
in the cavities. These structures are similar in shape to ribs,
and for this reason we call these regions low density ribs. Sep-
arate low density ribs show nearly identical features. They
have approximately equal size and bend along the magnetic
field lines directions, close to the reconnection X line.

Figure 4 panel b shows the density isosurfaces for
decreasing electron density values at successive times: the
grey, red, blue, and green isosurfaces represent regions with
ne ¼ 0:45 nb at time Xcit ¼ 12:1; ne ¼ 0:3 nb at time Xcit ¼
13:3; ne ¼ 0:16 nb at time Xcit ¼ 14:5, and ne ¼ 0:15 nb at
time Xcit ¼ 15:7, respectively. Two main results are found
analyzing Figure 4 panel b. First, the cavities are perturbed
by density waves that are almost stationary in space, far
from the X line (12 di < x < 15 di) in a time period
12:1 < Xcit < 15:7. Closer to the X line (10 di < x < 12 di),
the density waves start to overlap at different times, probably
because of reconnection non-stationary dynamics and of the
temporal variation of the electron velocity near the X line.

Second, the density in the low density ribs decreases in time.
Note that the electron population can develop areas with den-
sity as low as ne ¼ 0:2nb when the ambient background
plasma starts to dominate the separatrix edge.

An intense parallel electron current develops along the
cavities and contributes to the formation of the low density
ribs by progressively decreasing the density in localized
channels. This mechanism was identified previously using
two dimensional particle-in-cell simulations in Refs. 7 and 8,
and our study confirms that electron acceleration inside the
cavities is the main mechanism for creating the cavity den-
sity depletion. Figure 5 shows electron current streamlines in
the cavity regions at time Xcit ¼ 14:5. The electron current
streamlines are organized in bundles directed along the cav-
ity channels. The electron velocity reaches approximately
the peak 20VAe, where VAe is the electron Alfvén velocity.

The low density ribs are aligned with magnetic field
lines. The two dimensional studies performed in Ref. 5
reveal that the unstable electron Kelvin-Helmholtz waves
grow rapidly in a plane perpendicular to the local magnetic
field. Figure 6 shows the magnetic field lines (red tubes):
they are parallel to the grey ne ¼ 0:36nb isosurface, which
identifies the low density ribs, at time Xcit ¼ 14:5. The low
density rib structures are supported by the strong electric
fields. An isosurface plot of the perpendicular electric field
intensity (E? ¼ E" E # B=jBj) in Figure 7, shows the

FIG. 3. Contour plots of the electron density in the region x ¼ 4:8di " 14:5di; y ¼ 4di " 11:2di; z ¼ Lz=2 at different times. The plot shows the formation of
the density cavity layers (blue regions), and the successive development of density ripples, reminiscent of Kelvin-Helmholtz vortices, along the cavities. The
local magnetic field in the cavity is approximately 45$ out of the presented plane.
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The surfaces between the new 
magnetic regions, dividing the 
inflow and outflow plasmas 
are called separatrices.

One of the distinctive features 
of collisionless magnetic 
reconnection is the formation 
of localized low density 
regions along the separatrices 
called cavities.

In presence of guide field, 
separatrices display anti-
symmetric features with 
respect to the X line: the 
cavities develop only along 
two separatrices. In addition, 
strong electron beams move 
toward the X line along the 
cavities separatrices



Simulation Set-Up

B!

J!

x!

y!

z!
A uniform magnetic field (guide field) Bg = 
B0 in the z direction is added.

Lx = 20 di

Ly = 15 di

Lz = 10 di

nxc x nyc x nzc = 256 x 192 x 128
Periodic BC in x and z
Perfect conductor BC in y

nb = 0.1 n0

Δt = 0.125 ωpi-1

mi/me= 256

np = 3*109

Initial Perturbation along the dashed line.

presents the evolution of three dimensional guide field mag-
netic reconnection, the cavity and low density ribs formation,
and the presence of bipolar parallel electric field structures in
their proximity. Section III discusses the results and the pos-
sible origins of three-dimensional structure of the cavities.
Finally, Sec. V summarizes the results.

II. SIMULATION SET-UP

Simulations are carried out in a three-dimensional sys-
tem, where a Harris current sheet equilibrium is initially
imposed.25 The z coordinate is taken along the Harris sheet
current, while the x-y plane is the reconnection plane. The x,
y, and z simulation coordinates correspond to !xGSM; zGSM,
and !yGSM coordinates in the Geocentric Solar Magneto-
spheric (GSM) system and to Earth-Sun, North-South, and
dawn-dusk directions in Earth magnetotail.

The plasma density profile is initialized as:

nðyÞ ¼ n0 cosh!2 y! Ly=2

k

! "
þ nb: (1)

The peak density, n0, is the reference density, while the
background density nb ¼ 0:1n0; Lx & Ly & Lz ¼ 20 di & 15 di

&10 di are the simulation box lengths and k ¼ 0:5 di is the
half-width of the current sheet. The ion inertial length is
di ¼ c=xpi, with c the speed of light in vacuum, xpi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pn0e2=mi

p
the ion plasma frequency, e the elementary

charge, and mi the ion mass. The electron mass is me

¼ mi=256.
A magnetic field in the x direction is initialized to satisfy

the Harris equilibrium force balance:

BxðyÞ ¼ B0 tanh
y! Ly=2

k

! "
: (2)

FIG. 1. Volume plot of the electron current density at different times. The initial Harris current sheet breaks in two reconnection jets, moving away from the x
line. The electron current develops filamentary structures along the separatrices at later times.
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sible origins of three-dimensional structure of the cavities.
Finally, Sec. V summarizes the results.
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dawn-dusk directions in Earth magnetotail.
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current layers in two dimensional particle-in-cell simulations
and in the contourplot on the plane z ¼ Lz=2 in Figure 3.
Figure 4 panel a shows two isosurface plots of the electron
density at time Xcit ¼ 14:5. The electron density is normal-
ized to the background density nb ¼ 0:1n0. The isosurface
ne ¼ 0:65nb (orange color) shows the cavity layer, approxi-
mately 1 di thick; the isosurface ne ¼ 0:4nb (grey color)
reveals that regions with further lower density are embedded
in the cavities. These structures are similar in shape to ribs,
and for this reason we call these regions low density ribs. Sep-
arate low density ribs show nearly identical features. They
have approximately equal size and bend along the magnetic
field lines directions, close to the reconnection X line.

Figure 4 panel b shows the density isosurfaces for
decreasing electron density values at successive times: the
grey, red, blue, and green isosurfaces represent regions with
ne ¼ 0:45 nb at time Xcit ¼ 12:1; ne ¼ 0:3 nb at time Xcit ¼
13:3; ne ¼ 0:16 nb at time Xcit ¼ 14:5, and ne ¼ 0:15 nb at
time Xcit ¼ 15:7, respectively. Two main results are found
analyzing Figure 4 panel b. First, the cavities are perturbed
by density waves that are almost stationary in space, far
from the X line (12 di < x < 15 di) in a time period
12:1 < Xcit < 15:7. Closer to the X line (10 di < x < 12 di),
the density waves start to overlap at different times, probably
because of reconnection non-stationary dynamics and of the
temporal variation of the electron velocity near the X line.

Second, the density in the low density ribs decreases in time.
Note that the electron population can develop areas with den-
sity as low as ne ¼ 0:2nb when the ambient background
plasma starts to dominate the separatrix edge.

An intense parallel electron current develops along the
cavities and contributes to the formation of the low density
ribs by progressively decreasing the density in localized
channels. This mechanism was identified previously using
two dimensional particle-in-cell simulations in Refs. 7 and 8,
and our study confirms that electron acceleration inside the
cavities is the main mechanism for creating the cavity den-
sity depletion. Figure 5 shows electron current streamlines in
the cavity regions at time Xcit ¼ 14:5. The electron current
streamlines are organized in bundles directed along the cav-
ity channels. The electron velocity reaches approximately
the peak 20VAe, where VAe is the electron Alfvén velocity.

The low density ribs are aligned with magnetic field
lines. The two dimensional studies performed in Ref. 5
reveal that the unstable electron Kelvin-Helmholtz waves
grow rapidly in a plane perpendicular to the local magnetic
field. Figure 6 shows the magnetic field lines (red tubes):
they are parallel to the grey ne ¼ 0:36nb isosurface, which
identifies the low density ribs, at time Xcit ¼ 14:5. The low
density rib structures are supported by the strong electric
fields. An isosurface plot of the perpendicular electric field
intensity (E? ¼ E" E # B=jBj) in Figure 7, shows the

FIG. 3. Contour plots of the electron density in the region x ¼ 4:8di " 14:5di; y ¼ 4di " 11:2di; z ¼ Lz=2 at different times. The plot shows the formation of
the density cavity layers (blue regions), and the successive development of density ripples, reminiscent of Kelvin-Helmholtz vortices, along the cavities. The
local magnetic field in the cavity is approximately 45$ out of the presented plane.
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Evolution of Density Cavities

instability develops

The plot shows the formation of the density cavity layers (blue 
regions), and the successive development of density ripples, 
reminiscent of Kelvin-Helmholtz vortices, along the cavities.



presence of a perpendicular electric field that oscillates in
space in proximity of the cavities. The perpendicular electric
field oscillates in space between !"1:5B0VA=c and !
1:0B0VA=c values, with an oscillation wavelength around
one Larmor gyro-radius. Its maximum intensity is approxi-
mately 4.5 times the reconnection electric field Ez (Figure 2
panels b and c).

B. Bipolar electric field structures

The carried-out simulations confirm the presence of
bipolar parallel electric field (E== ¼ E $ B=jBj) signatures
along the cavities, reported by previous simulation stud-
ies.15,29,30 Figure 8 shows an isosurface plot of E== ¼
60:3B0VA=c with density isosurfaces ne ¼ 0:4 nb; 0:65 nb

from two different points of view. Note that the net parallel
electric field, which determines the electron acceleration
inside the cavities, is much weaker than the bipolar electric
fields and it does not appear in the plot. The presence of
bipolar parallel electric field structures along the cavities,
appearing as red and blue hemispheres, is evident. The plot
reveals that the bipolar structures are isolated spherical for-
mations. The peak intensity of the bipolar parallel electric
field signatures is of order 0:3B0VA=c. The combination of

FIG. 4. Panel a shows the two electron density isosur-
face plots for n ¼ 0:65 nb (orange color) and n ¼ 0:4 nb

(grey color) at time Xcit ¼ 14:5, revealing the cavities
and the low density ribs within them. Panel b shows the
electron density isosurface plots at successive times
(Xcit ¼ 12:1 in grey, Xcit ¼ 13:3 in red, Xcit ¼ 14:5 in
blue, and Xcit ¼ 15:7 in green) for decreasing electron
densities (ne ¼ 0:45 nb in grey, ne ¼ 0:3 nb in red, ne ¼
0:16 nb in blue, and ne ¼ 0:12 nb in green). The location
of the low density ribs is approximately fixed in time,
and their density progressively decreases.

FIG. 5. Electron current streamlines in the cavity region at time Xcit
¼ 14:5. The color indicates the Jy value, normalized to en0c. The electron
current streamlines are organized in bundle in the cavity region. The X line
is along the z direction at x ¼ 10 di; y ¼ 7:5 di (dashed black line). The
streamlines at x < 10 di (left side in the x direction) and at x > 10 di (right
side in the x direction) originate from seed lines at x ¼ 6:5 di; y ¼ 8:5 di and
x ¼ 13:5 di; y ¼ 6:5 di. The arrows indicate the electron flow direction in the
x–z plane far from the X line.
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The location of the 
low density ribs is 
approximately fixed 
in time, and their 
density progressively 
decreases.

= cavities

= sub-cavities or low density ribs

The isosurface ne = 0.65 nb  
shows the cavity layer, the 
isosurface ne =0.4nb  reveals 
that regions with further 
lower density are embedded 
in the cavities.



Electric field bipolar structures localized along separatrices

electron density and parallel electric field plots in Figure 8
shows that the bipolar electric field structures are elongated
in the direction of the low density ribs, and of the magnetic
field lines. Solitary electrostatic waves tend to appear
between consecutive low density ribs in relatively higher
density regions of the cavities. The positive hemisphere of
the bipolar electric field precedes the negative part in the

direction toward the X point along the separatrix. Panel b
reveals that the bipolar electric field structures form between
the cavities and the outflow plasmas.

IV. DISCUSSION

The reported particle-in-cell simulation shows the for-
mation of the cavity layers and of low density ribs within

FIG. 6. Electron density isosurface plot for ne ¼ 0:36nb with magnetic field
lines in red tubes at time Xcit ¼ 14:5. The low density ribs are aligned with
the magnetic field lines.

FIG. 7. Perpendicular electric field intensity isosurface plot at time
Xcit ¼ 14:5. The perpendicular electric field reaches high intensity values
(approximately 4.5 the reconnection electric field) and it oscillates in space
supporting the low density rib structures.

FIG. 8. Electron density isosurface plot
for n ¼ 0:4nb; 0:65nb in orange and grey
colors with parallel electric field isosur-
face plot for E== ¼ 60:3B0VA=c in red
and blue colors at time Xcit ¼ 14:5 from
two different points of view. The bipolar
parallel electric field structures develop
along the low density ribs and magnetic
field lines direction between the cavities
and the outflow regions. Supporting ma-
terial is provided online to analyze this
configuration from different points of
view (enhanced online). [URL: http://
dx.doi.org/10.1063/1.3697976.1]

032119-6 Markidis et al. Phys. Plasmas 19, 032119 (2012)

Downloaded 23 Jul 2013 to 204.121.140.145. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

electron density and parallel electric field plots in Figure 8
shows that the bipolar electric field structures are elongated
in the direction of the low density ribs, and of the magnetic
field lines. Solitary electrostatic waves tend to appear
between consecutive low density ribs in relatively higher
density regions of the cavities. The positive hemisphere of
the bipolar electric field precedes the negative part in the

direction toward the X point along the separatrix. Panel b
reveals that the bipolar electric field structures form between
the cavities and the outflow plasmas.

IV. DISCUSSION

The reported particle-in-cell simulation shows the for-
mation of the cavity layers and of low density ribs within

FIG. 6. Electron density isosurface plot for ne ¼ 0:36nb with magnetic field
lines in red tubes at time Xcit ¼ 14:5. The low density ribs are aligned with
the magnetic field lines.

FIG. 7. Perpendicular electric field intensity isosurface plot at time
Xcit ¼ 14:5. The perpendicular electric field reaches high intensity values
(approximately 4.5 the reconnection electric field) and it oscillates in space
supporting the low density rib structures.

FIG. 8. Electron density isosurface plot
for n ¼ 0:4nb; 0:65nb in orange and grey
colors with parallel electric field isosur-
face plot for E== ¼ 60:3B0VA=c in red
and blue colors at time Xcit ¼ 14:5 from
two different points of view. The bipolar
parallel electric field structures develop
along the low density ribs and magnetic
field lines direction between the cavities
and the outflow regions. Supporting ma-
terial is provided online to analyze this
configuration from different points of
view (enhanced online). [URL: http://
dx.doi.org/10.1063/1.3697976.1]
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The bipolar parallel 
electric field 
structures develop 
along cavities as 
effect of streaming 
instabilities.



The TI leads to minuscule plasmoid growth and rise of
the magnetic field By component (B?1 in original frame of
reference). The growth rate estimates for the modes 1 ! m !
30 during the linear phase (Fig. 13(b)) reveal that the mag-
netic field dynamics qualitatively repeats the behaviour of
the velocity component vey. From that we conclude, that
the tearing instability is modulated strongly by the faster
electron KHI mode and does not determine the
perpendicular dynamics of the “active” separatrix jet. How-
ever, TI-KHI interaction in the nonlinear regime remains an
open question.

V. DISCUSSION AND CONCLUSIONS

In this paper, the instabilities localized along magnetic
reconnection separatrices are studied by means of 2.5 D PIC
simulations. A case of guide field reconnection with
Bg=B0 ¼ 1 is considered. The simulations have realistic
electron-to-proton mass ratio me=mi ¼ 1=1836, thanks to
the implicit solvers implemented in the PIC code iPIC3D
(Ref. 22).

The larger scale run (Sec. II) computational domain size
is Lx ¼ 40 di, Ly ¼ 20 di. The initial condition is a Harris
sheet with the width l ¼ 0:5 di, electron-to-ion temperature
ratio Te=Ti ¼ 1=5, and a small X-line perturbation in the

computational domain center.20 All the typical guide field
reconnection features are resolved: asymmetric plasma flows
and out-of-plane magnetic field pattern, density cavity and
electron jet at the active separatrices (Fig. 1). Considerable
electrostatic activity is observed there (Fig. 3). Distribution
function show prominent phasespace structures typical for
the streaming instabilities (Figs. 3(c) and 3(d)).

The instability, developing at the reconnection separa-
trix, was identified previously3,4,12,20,21 as either electron-ion
Buneman mode or electron-electron streaming mode. Paral-
lel electric field accelerates electrons, and a streaming mode,
parallel to the in-plane B component, is destabilized.

The translational invariance (@=@z ¼ 0) is typically pre-
sumed in large-scale PIC simulations as a trade-off between
the computational complexity and the level of the physics
resolved. The ignorance of the z direction is known to stabi-
lize the reconnection significantly. Large-scale three dimen-
sional simulations of magnetic reconnection,3,11,26,27 indeed,
showed rich multiscale dynamics, related to the development
of various z-aligned or oblique unstable modes.

A different approach is introduced in the present article.
In order to study the out-of-plane modes of the reconnection
separatrices found in the 2.5 D PIC simulations, we extracted
the in-plane profile first and then introduced a tilt in the z
direction, using the @=@z ¼ 0 property. This scheme does

FIG. 13. Growth rate estimates for the modes 1 ! m ! 30 of ve?1 electron
velocity component (a) and By component (b) in the (~e?1,~e?2) plane simula-
tion. A total of 12 profiles are taken, distributed evenly in the interval 0:8 !
y=di ! 0:9 that covers the entire ve?2 flow reversal. Red line: growth rate
estimate (Eq. (6)), for a set of parameters: ne0 ¼ 0:02, Vx0 ¼ 4:0VA, e ¼
0:025 di (thin red line) and ne0 ¼ 0:02, Vx0 ¼ 4:0VA, e ¼ 0:016 di (bold
green line).

FIG. 12. Time evolution of the absolute value of various kx modes of the vey

electron velocity component along the jet center (y ¼ 0:85 di): (a) modes 1,
3, and 6 amplitude (the mode 1 intensity is divided by 10 and the mode 6 in-
tensity is multiplied by 10 to enhance the image); (b) modes 9, 12, and 15
amplitude (the mode 15 intensity is divided by 10 and the mode 9 intensity
is multiplied by 10 to enhance the image). Linear fit for the Xcit < 0:1 inter-
val is plotted (blue dotted lines) and corresponding values of cm are shown.

042110-12 Divin et al. Phys. Plasmas 19, 042110 (2012)

Downloaded 24 Jul 2013 to 204.121.140.145. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

2D PIC simulation 
studies suggest that 
this instability is an 
electron MHD 
Kelvin-Helmholtz of 
the electron 
channel.



The fine structure of the cavities has been 
observed in the magnetotail.

Observation of multiple sub-cavities adjacent to single separatrix

Rongsheng Wang,1 Aimin Du,1 Rumi Nakamura,2 Quanming Lu,3 Yuri V. Khotyaintsev,4

Martin Volwerk,2 Tielong Zhang,2 E. A. Kronberg,5 P. W. Daly,5 and
Andrew N. Fazakerley6
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[1] We investigate a direct south-north crossing of a
reconnection ion diffusion region in the magnetotail.
During this crossing, multiple electron density dips with a
further density decrease within the cavity, called sub-
cavities, adjacent to the northern separatrix are observed.
The correlation between electron density sub-cavities and
strong electric field fluctuations is obvious. Within one of
the sub-cavities, a series of very strong oscillating
perpendicular electric field and patchy parallel electric field
are observed. The parallel electric field is nearly unipolar
and directs away from X line. In the same region, inflow
electrons with energy up to 100 keV are injected into the X
line. Based on the observations, we conclude that the high-
energy inflowing electrons are accelerated by the patchy
parallel electric field. Namely, electrons have been
effectively accelerated while they are flowing into the X
line along the separatrix. The observations indicate that the
electron acceleration region is widely larger than the
predicted electron diffusion region in the classical Hall
magnetic reconnection model. Citation: Wang, R., A. Du,
R. Nakamura, Q. Lu, Y. V. Khotyaintsev, M. Volwerk, T. Zhang,
E. A. Kronberg, P. W. Daly, and A. N. Fazakerley (2013),
Observation of multiple sub-cavities adjacent to single separatrix,
Geophys. Res. Lett., 40, doi:10.1002/grl.50537.

1. Introduction

[2] Magnetic reconnection is a fundamental plasma pro-
cess in space and laboratory plasmas, by which stored mag-
netic energy is converted into plasma energy, and mass and
momentum are transferred across boundaries. In the Earth
magnetosphere, it frequently happens in the magnetotail
and is the driver of storms and substorms. Density cavity,
also called density depletion layer, is a typical characteristic
of magnetic reconnection [Shay et al., 2001]. It is often ob-
served by the spacecraft in the separatrix region of magnetic
reconnection [Mozer et al., 2002; Vaivads et al., 2004;

Khotyaintsev et al., 2006; Retinò et al., 2006; Lu et al.,
2010; Zhou et al., 2011; Wang et al., 2012] and might play
a key role in accelerating electrons [Drake et al., 2005;
Divin et al., 2012; Wang et al., 2012]. Within the density
cavity, streaming of low energy electrons as a part of Hall
current system is detected frequently [Nagai et al., 2001;
Nakamura et al., 2008; Wang et al., 2010]. Recently, Wang
et al [2012] found that the energy of the streaming can be
as high as 20 keV. The observations indicate that electrons
may have been pre-accelerated in the separatrices.
However, the fine structure and how electrons are accelerated
in the cavity are still open questions.
[3] In this letter, we present a reconnection event observed

by Cluster [Escoubet et al., 1997] in the magnetotail and
analyze the density cavity in detail during one simple crossing
tailward of the X line. Except for a series of patchy parallel
electric field observed in the cavity, the prominent signature
of very strong oscillating perpendicular electric field
component is measured, which provides a new insight into
the acceleration mechanism of electrons in the separatrix.

2. Observation and Analysis

[4] We have used data from various instruments onboard
Cluster. The magnetic field data are obtained from the
FGM instruments sampled at 0.25/s and at 67/s. The electric
field data are taken from the EFW instruments sampled at
450/s. The low-medium (27 eV~ 22 keV) and high-energy
(>41 keV) electron data are taken from the PEACE instru-
ments and the RAPID instruments, respectively. The ion
plasma data are obtained from the CIS (CODIF) instruments
in 4 s resolution.
[5] Figure 1 shows an overview of the magnetic

reconnection event encountered by Cluster on 17 August
2003, at about [!17, !6, 3] RE (Earth radius) in the geocen-
tric solar magnetospheric coordinate system (GSM) with a
separation of 200 km (the top panel in Figure 3). To avoid in-
fluence of the Hall current system in ion diffusion region, we
applied minimum variance analysis (MVA) [Schwartz, 1998]
to the magnetic field data of the magnetotail current sheet
crossing between 1550 and 1620 UT when the current sheet
is quiet. Relative to GSM, L= (0.957, 0.237, !0.166),
M = (!0.271, 0.935, !0.228), and N= (0.102, 0.263,
0.959), which are used throughout this letter unless otherwise
stated. During 1630–1705 UT, the coincident reversals of the
high-speed flow from tailward to earthward (Figure 1g) and
of the magnetic field component BN from southward to north-
ward (Figure 1e) are obvious. Simultaneously, there is a
background magnetic field in the M direction, a so-called
guide field (Bg), of approximately !10 nT. This guide field
might originate from the interplanetary magnetic field, as
suggested by Nakamura et al. [2008]. The scatterplot of
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3 - Plasmoid Chain Dynamics
• Three dimensional evolution of plasmoid chain dynamics.

• References papers:

• Markidis, Stefano, Pierre Henri, Giovanni Lapenta, Andrey 
Divin, Martin Goldman, David Newman, and Erwin Laure. 
"Kinetic Simulations of Plasmoid Chain Dynamics." 
accepted for publication, Physics of plasmas (2013).

• Markidis, Stefano, Pierre Henri, Giovanni Lapenta, Andrey 
Divin, Martin V. Goldman, David Newman, and Stefan 
Eriksson. "Collisionless magnetic reconnection in a 
plasmoid chain." Nonlinear Geophysics (2012).

• Newman, D. L., M. V. Goldman, G. Lapenta, and S. Markidis. 
"Magnetospheric Reconnection in Modified Current-
Sheet Equilibria."Bulletin of the American Physical Society 57 
(2012).



Plasmoid Chain
• Plasmoids are high density structures forming from the outflow 

plasma accelerated in magnetic reconnection. If magnetic 
reconnection occurs in multiple points, the outflow plasmas from 
adjacent reconnection sites form multiple plasmoids, organized as 
beads in a chain

• The effect of moderate guide field (1/3 B0) is studied by 
comparing the results of two simulations with and without 
guide field in a configuration that mimics Earth magnetotail 
condition.



The initial  configuration is not in equilibrium.  The initial current Jz is 20% of the current 
necessary to support consistently the initial magnetic field.  As result of this non-equilibrium,
the plasma is initially accelerated toward the current sheet to establish a current consistent 
with the initial magnetic field configuration, accelerating the reconnection initiation.



Plasmoid chain dynamics in the 
antiparallel case (no guide field)





lower hybrid waves









Hierarchical 

Hierarchical structure of Hall 
magnetic field



Plasmoid chain dynamics in the guide 
field case







plasmoids twist

plasmoid twists







The overall dynamics of plasmoids chain with and without a guide field is 
similar macroscopically (tearing, coalescence, kinking, lower hybrid waves). 
However, important differences are revealed:

• Hierarchical structure of the plasmoid-dominated 
current sheets is observed only in absence of a guide field.  
We believe that hierarchical structure is caused by Lower-
Hybrid Drift instability thinning non uniformly the current 
sheet.

• A strong core magnetic field is observed only in presence 
of an initial guide field. This suggests that a core field arises 
only if a guide field is present.



Conclusions

• Presented 3D simulations of magnetic reconnection with iPIC3D starting 
from 3 different initial conditions to study different problems:

• Antiparallel Harris equilibrium with perturbation to study 
instabilities of the reconnection fronts (kinetic interchange 
instability)

• Harris equilibrium with guide field with perturbation to study 
instabilities along separatrices (presence of sub-cavities, electron 
MHD KHI, streaming instabilities).

• Harris sheet non in equilibrium to study plasmoid chain dynamics in 
magnetotail condition (hierarchical structure of plasmoid-dominated 
current sheet in antiparallel configuration).


