

Particle energization

Turbulence laboratory

near Earth space

on ground

1 km electron scales 0.1 mm

Near Earth space is the best laboratory to study plasma energization in turbulence on kinetic scales

gamma X-ray, e- synchotron Optical

Fermi LAT GeV gamma-ray source

Magnetic field

1000's km/s

Synchrotron Radiation

Spiraling electrons

shock

Credit: NASA/DOE/Fermi LAT Collaboration, CXC/SAO/JPL-Caltech/Steward/O. Krause et al., and NRAO/AUI

Primary science targets

Pristine solar wind Foreshock Bow shock Magnetosheath

VLASIATOR Density, log scale

Science

Exploring plasma energization in space turbulence

✓ How is plasma heated and particles accelerated?

Coherent structures & wave identification Their effects on plasma

✓ How is the dissipated energy partitioned?

Electrons vs protons vs heavier ions Heating vs. particle acceleration

✓ How does dissipation operate in different regimes of turbulence?

Pristine solar wind Flow interaction regions Shocks and sheath regions behind shocks

THOR - first dedicated mission!

Heating in kinetic scale turbulence

- ✓ different kinds of turbulent fluctuations contribute to heating (waves, coherent structures)
- ✓ heating is different among different ion species
- $\checkmark\,$ similar heating processes for electrons

Coherent structures numerical simulations

- ✓ Heating is localized in regions of strong current at kinetic scales.
- ✓ The structure is quasi-stationary over the time it would take a spacecraft to cross it.
- ✓ Phase velocity of structure can be estimated from single spacecraft measurements e.g. through conservation of E_{tang}.

Coherent structures in situ data

Resolution of particle measurements not adequate to quantify heating.

- Sun-pointer
- Slow spinner (2rpm)
- Advantages for E fields and for particle instruments

OHB SWEDEN Mission profile Eric Clacey OHB Sweden

Mature payload

	Instrument	Measurement	Teams (PI, Co-PI, Lead-Col)
FIELDS	MAG	B field DC	IWF(AU), ICL(UK)
	SCM	B field AC	LPP(FR), LPC2E(FR)
	EFI	E field DC/AC	IRF(SE), SSL(US), SRC-PAS(PL), KTH(SE)
	FWP	E&B data products	IAP(CZ), SRC-PAS(PL), U.Sheffield(UK), LESIA(FR)
PARTICLES	ESA	e ⁻ spectrometer	MSSL(UK), NASA/GSFC(US)
	CSW	Cold solar wind ions	IRAP(FR), BIRA-ISAB(BE)
	IMS	H ⁺ , He ⁺⁺ , He ⁺ ,O ⁺	LPP(FR), UNH(USA), <i>ISA/JAXA(JP), MPS(DE)</i>
	PPU	Particle data products	INAF-IAPS(IT)
	FAR	Faraday cup	MFF(CZ)
	EPE	Energetic particles	IEAP(DE), U.Turku(FI)

Single s/c with highest resolution field and particle measurements ever, to satisfy the THOR science requirements!

THOR timeline

- ✓ 2015-01-15 the proposal submitted to ESA
- ✓ 2015-06-04 THOR selected for study phase
- ✓ 2015-06-11 kick-off of internal ESA phase 0 study.
- ✓ 2015 fall the end of phase 0.
- ✓ 2016 phase A study
- ✓ 2016 kick-off workshop of THOR
- ✓ 2017 spring the final down-selection
- ✓ 2026 launch

THOR science supporting team

200+ scientists from different plasma communities

space, theory, simulations, astro and laboratory

http://thor.irfu.se

New members welcome!

Thank you!