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Overview:
* Time-evolution of magnetic field (and plasma bulk motion)
* Reconnection in the corona (and photospheric flux emergence)
* Electric fields in an MHD model...?
* Proton and Electron acceleration from electric fields in the corona



  

=> Observationally driven forward model (“field-line braiding”):

- Photospheric granulation advects small-scale magnetic fields

- Stress is induced into the magnetic field

- Braiding (or bending) of the field in the corona

- Currents are induced and dissipated to heat the corona

(Gudiksen & Nordlund, 2002) (Parker, 1972, ApJ. 174, 499)

Coronal 3D MHD model



  

3D-MHD simulation:

- Large box: 235*235*156 Mm³

- High resolution grid: 1024*1024*256

=> Horizontal: 230 km, matches observation

=> Vertical resolution: 100 – 800 km,

sufficient to describe coronal heat conduction

and evaporation into the corona

The Pencil Code:

http://Pencil-Code.Nordita.org/

(A. Brandenburg, W. Dobler, 2002, Comp. Phys. Comm. 147, 471-475)

- High-performance computing:

(TRACE observation in Fe-IX/-X)

Model setup

http://pencil-code.nordita.org/


  

What is needed to solve the coronal heating problem...?

=> General self-consistent model description on the observable scales

- Photospheric driving mechanism for coronal energy input of ~ 0.1-1 kW/m²



  

Driving the simulation Hinode/SOT observation (14th November 2007, 15:00-17:00 UTC)
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- Compressible resistive MHD



  

- Continuum equation:

- Equation of motion:

- Induction equation:

- Energy balance:

Compressible resistive magneto-hydrodynamics (MHD):
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- Continuum equation:

- Equation of motion:

- Induction equation:

- Energy balance:

=> Radiative losses: (Cook et al., 1982)

=> Heat conduction: (Spitzer, 1962)

Compressible resistive magneto-hydrodynamics (MHD):
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What is needed to solve the coronal heating problem...?

=> General self-consistent model description on the observable scales

- Photospheric driving mechanism for coronal energy input of ~ 0.1-1 kW/m²

- Heat conduction that leads to chromospheric evaporation

- Compressible resistive MHD

- Resolve strong gradients in density and temperature

(Stix, 1989/2002)   (FAL-C, 1993) (November-Kouchmy, 1996)



  

What is needed to solve the coronal heating problem...?

=> General self-consistent model description on the observable scales

- Photospheric driving mechanism for coronal energy input of ~ 0.1-1 kW/m²

- Heat conduction that leads to chromospheric evaporation

- Compressible resistive MHD

- Resolve strong gradients in density and temperature

- Avoid switching-on effects

(Bourdin, Cent. Eur. Astrophys. Bull. 38/1, 1–10, 2014)



  

Synthesized emission (CHIANTI)

(Bourdin et al., PASJ 66/S7, 1–8, 2014)

=> hot loops in AR core



  

Comparing to observations



  

=> Model fieldlines follow observed loops

Comparing to observations (Hinode EIS/SOT)

Hinode EIS observation

Fe XV ~1.5 MK

(Bourdin et al., A&A 555, A123, 2013)

Hinode SOT magnetogram

SL 1

CL 1



  

=> 3D structure and height => Model fieldlines follow observed loops

of model loops realistic

Comparing to observations (STEREO A/B)

Hinode SOT magnetogram

SL 1

CL 1

3D reconstruction
Fe XV emission
model fieldline

CL 1

SL 1

(Bourdin et al., A&A 555, A123, 2013)



  

- Alignment accurate to 3 arcsec => Small loops SL 1-3 at same position

Comparison of intensity

model emissionHinode EIS observation

Fe XV ~1.5 MK

(Bourdin et al., A&A 555, A123, 2013)



  

Comparison of Doppler-shifts: => Dynamics match!

=> Loop top rises: 2 km/s (Solanki, 2003)

Comparing to observations (Hinode EIS)

Fe XII ~1.1 MK

Hinode EIS observation model Doppler-shift

(Bourdin et al., A&A 555, A123, 2013)



  

Statistical Doppler-shift analysis

Intensity: Doppler shift: Line formation Temperature:

~ 100'000 K

~ 700'000 K

~ 1'500'000 K



  

Statistical
Doppler-shift
analysis



  

Statistical
Doppler-shift
analysis



  

Statistical
Doppler-shift
analysis

- Blue-shifts

  in the corona

- Stronger

  Red-shifts

  above the AR

  as compared to

  QS (as observed)



  

Field topology



  

Field topology

Temperature:

(horizontal cut)

(height: 11.2 Mm)

(black: 1.25 MK)

- Magnetic field

  quite parallel

  in the corona

- Braided field

  only in the

  lower atmosphere
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Testing scaling laws with field-line ensemble

RTV temperature: RTV density:



  

Temporal evolution of field lines (and bulk plasma motion)



  

Temporal evolution of field lines (and bulk plasma motion)



  

Temporal evolution of field lines
(and bulk plasma motion)

Temperature:

(white: 1.2 MK)

- Bulk plasma rising

  together with field line

- Material draining then

  to the both sides of the loop

  (steady flow of “coronal rain”?)



  

Reconnection and B-parallel electric fields



  

Reconnection and B-parallel electric fields

E_parallel:

(saturation level:

 ± 0.5 V)

- Loop in strong

  reconnection

  region (red)

- E_parallel

  rather uniform

  along loop



  

Particle acceleration from electric fields



  

Particle acceleration from electric fields



  

Particle acceleration from electric fields



  

Statistical study: Evolution of particle power spectra

Electrons: Protons:



  

- First observationally driven 3D MHD “1:1” model of a full Active Region.

=> Matches observation (3D structure of loop system in hot AR core & plasma flow dynamics).

=> Ohmic (DC) heating from field-line braiding main contributor to the coronal heat input.

(rather slow “magnetic diffusion” than fast “nanoflares”)

=> Model sufficiently describes the coronal heating mechanism

to explain a broad variety of coronal observations on the “real Sun”.

Summary:



  

- First observationally driven 3D MHD “1:1” model of a full Active Region.

=> Matches observation (3D structure of loop system in hot AR core & plasma flow dynamics).

=> Ohmic (DC) heating from field-line braiding main contributor to the coronal heat input.

(rather slow “magnetic diffusion” than fast “nanoflares”)

=> Model sufficiently describes the coronal heating mechanism

to explain a broad variety of coronal observations on the “real Sun”.

=> Magnetic topology largely dominated by bipolar field, no sudden outbreaks or changes.

=> Heating and steady magnetic reconfiguration by “slow reconnection”.

=> Bulk plasma motion follows the raising field and leads to draining loop legs.

=> Particle acceleration by strong B-parallel electric fields yields up to MeV electrons.

“Dankeschön!”

Summary:

More specific...?
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