PIC Algorithm, iPIC3D Code and its
Application to Study
Magnetic Reconnection

Stefano Markidis

High Performance Computing and Visualization Department
KTH Royal Institute of Technology

TS Oct 1 2014 - KULeuven

Outline

What are PIC Simulations ?

Particle and Particle-in-Cell methods
— Number of particles, DX, DT

The iPIC3D code
— Installation, running, inputfiles and output

Exercises in class

What are PIC Simulations ?

Solving numerically a large number of ODE
equations (particle) and PDE (field). Coupling
between ODEs and PDE equations are provided by
an operation called interpolation

Variables are (time/space) differenced/discretized.
e Space 2 Dx, Time = DT
* U (time)> U" (space)—> UM,
Discretization introduces errors proportional to Dx
and Dt (Accuracy defines how big is this error)

If this error remains bounded in time then the
scheme is stable, if it grows it is unstable.

If conservation laws (Energy, momentum) are not
satisfied, some spurious effect is introduced in the
simulation

Particle Algorithms

e Use particle to represent plasma particles:
electrons (negative small particles) and ions
(positive charged larger particles).

* Difference in mass between electron and ion is
typically reduced, i.e. mi/me = 64, or 256, ... 2
this allows to complete “smaller” simulation.

e Several studies to assess the use of “unphysical”

mass ratios between electrons and ions = details

changes but same overall behaviors.

Particle Algorithms

All particle methods solve the equation of motion

(ODE) for each particle:

This stage is called

AV

dx
— =V
dt
dv
— = %(E +v xB)
DISCRETIZATION
% > time
tn tn+1
n+1 n
X —X _
Ver—|—1 v

AV
%(@ v" X@

How do we
calculate the
electric and
magnetic field
acting on
particles ?!

Particle- Algorithms

The electric and magnetic

fields are defined on each

EB center (or node) of the cells
\@ of a grid.

Depending on which cell the
" E'B\é particle is located, the E and B

acting on the particle are the
ones defined at the center

cell
(or a combination of the

§ values of neighbor cells).

This step is called

and is typically part of the
stage

How do we Calculate E and B on the grid?

We discretize in space
and time the Maxwell's
equations on the grid
and solve them using a
linear solver (typically
iterative Krylov solvers,

i.e. GMRes or CG).
| 070 5¢
\ But before that, we need the J

This stage is called
and the rho defined on the grid ?!

J and rho on the Grid ?

We use the trick we used to
calculate the E and B acting

on the particles L,
(interpolation grid particle).

Rho

'N

Each particle in a cell
contributes to

rho in the cell as and to T

Jin the cell as

For each particle, we check in

which cell is located, and éh
deposit its charge and

current densities on the cell.

This stage is called

PIC Algorithm

Putting all together ...

P

This cycle is
repeated several
times:t=t+ DT

IPIC3D

IPIC3D is a PIC code implementing the PIC
algorithm.

The “i” refers to the discretization in time of
the Maxwell’s equations (implicit in time).

Designed for running on supercomputers but |
am providing a version of the code that
doesn’t need libraries for supercomputers

It is in 3D but used in a 2D configuration
today.

How Many Particles ?

* To solve the PIC discretized equations is
equivalent to solve the discretized Vlasov
equation (equation for f) + Maxwell’s equation

* Particles provides a statistical representation

of f. More particles = better representation
of f.

* Difficulties of representing f at high velocities
(called “tails” of f) because we have few
particles at high velocities. Resonance
phenomena might not be present if not
enough particles.

Maxwellian with Particles (v0=0, vth=0.5)

How long DT ?

For numerical stability reasons, DT must be
smaller than % of the plasma period.

Higher density = lower plasma period

Implicit Scheme (like iPIC) allows us to avoid
this stability, DT = 2-3 plasma periods

Keep in mind that it is a local quantity!

Implicit schemes damp in time high frequency
component of the field (< plasma frequency)

How Large Dx?

Dx should be less than the
Debye length (characteristic
screening distance) = vy, ./w,

Implicit schemes allows us to o -
use approx Dx = 10 Debye
lengths

Keep in mind that it is a local
guantity!

Perfect BC on boundaries
problematic because we
should resolve sheath of
typically tens Debye lengths

,:‘f_‘ -A.__... ‘
N7 Debye length

The Divergence Cleaning in PIC

methods

* The field solver in PIC methods
solves the Ampere and Faraday
laws,

* In PIC methods, div(B)=0 is always
conserved but not div(E) = rho/eps!

 To enforce the Gauss a law an extra
equation (divergence cleaning) is
solved, the solution of this
equation corrects the results
obtained by solving Ampere and
Faraday law

Variables in iPIC3D

 hat variables = intermediate variables
used for estimating other variables

Main file iPIC3D.cpp

EMf->initGEM(vct,grid);
for (inti=0;i<ns;i++)
part[i].maxwellian(grid, EMf, vct);

for (int cycle = first_cycle; cycle < (col->getNcycles() + first_cycle); cycle++) {
cout << " cycle =" << cycle + 1 << endl;

EMf->setZeroDensities();
for (inti=0;i<ns;i++)
part[i].interpP2G(EMT, grid, vct);)
EMf->sumOverSpecies(vct);
EMf->interpDensitiesN2C(vct, grid);
EMf->calculateHatFunctions(grid, vct);

EMf->calculateE(grid, vct);
for (inti=0;i<ns;i++)

part[i].mover_PC(grid, vct, EMf);
EMf->calculateB(grid, vct); // calculate the B field

Software Requirements

g++ or any other c++ compiler

If g++ not available, we provide the results
from a previous simulation.

Autotool make available. Otherwise
compilation from command line possible.

Paraview software for visualization

(Eventually Visit program can substitute
Paraview)

Input File (Sample GEM2D.inp)

SaveDirName = data

BOy =0.0

B0z =0.0

delta = 0.5 #current sheet thickness
dt = time step

ncycles = 2402 # cycles

nyc = number of cells - y direction
ns=number of species
ns=4
gom = charge to mass ratio for different species */
gom =-64.01.0-64 1.0
Initial density (make sure that plasma is neutral)
rhoINIT=1.01.00.10.1
npcelx = number of particles per cell - Direction X
npcelx=3322
npcely = number of particles per cell - Direction Y */
npcely=3322
npcelz = number of particles per cell - Direction Z */
npcelz=3322

4 species:

1. Electron current sheet
2. lon Current Sheet

3. Electron background
4. lon Background

Few Words About iPIC3D Units

All variables are dimensionless. The code allows
different normalization, however the most used one
IS:

— density is normalized by the characteristic current
sheet peak density p,

— Time is normalized over w/;

— Velocities are normalized to the speed of light in
vacuum ¢

— Coordinates and lengths are normalized by ion skin
depth d.

— The remaining quantities over a combination of the
previous ones.

Initial Configuration: 1 current sheet

In initGEM(...) subroutine in fields/EMFields3D.h

L Perfect Conductor

—
—
—

Perfect Conductor

~

0 X .

Periodic

Initial Configuration

One current to satisfy Ampere’s law =2 we
determine the v drift

+ Force balance -2 initialize p = initialize rho and vth

Initial Configuration

Harris equilibrium:

Bx=Bo tanh(y/L)

p(y)=po sech(y/L)

particle velocities are sampled as a drifted Maxwellian.

A background plasma is added typically 10-20% density of the peak density.
An initial perturbation is added to the magnetic field.

Initial Configuration

We perturb the magnetic field lines only in the
center of the current sheet layer.

=

We want to speed up reconnection introducing
already an x-line in the simulation.

Installation of iPIC3D

* Unzip iPIC3D-serial-epigram.zip
e cd iPIC3D-epigram
* Type “make”

iPIC3D-epigram markidis$
g++-02 -c ./particles/Particles3Dcomm.cpp
g++-02 -c./particles/Particles3D.cpp
g++-02 -c ./ConfigFile/src/ConfigFile.cpp
g++-02 -0iPIC3D \
iPIC3D.cpp Particles3Dcomm.o Particles3D.o ConfigFile.o

Running the iPIC3Dcode

Type “./iPIC3D inputfiles/GEM_2D.inp

%k 3k 3k 3k 3k 3k 3k ok 5k 5k 5k ok ok %k %k %k >k >k %k %k kok ok

cycle =47
%k 3K 3k 3k 3k 3k sk 5k 3k 5k 3k %k 3k %k 3k %k %k %k 5k %k 5k %k k
*%** E CALCULATION ***
*** DIVERGENCE CLEANING ***
CG Initial error: 0.383322
CG converged at iteration # 70 with error 0.000381786
*** MAXWELL SOLVER ***
Initial residual: 0.70326 norm b vector (source) = 0.446776
GMRES converged at restart # O; iteration #14 with error: 0.000924232
k% MOVER with SUBCYCLYING 1 - species 0 ***
k% MOVER with SUBCYCLYING 1 - species 1 ***
*** MOVER with SUBCYCLYING 1 - species 2 ***
*** MOVER with SUBCYCLYING 1 - species 3 ***
*%% B CALCULATION ***

Output

cycle time tot_en magnetic_en kinetic_en ...

in the results directory every 10 cycles
(from inputfile): B, E, rho, v.

We visualize the VTK files using Paraview

Exercise — GEM Reconnection

e |nstall the iPIC3D code

* Run it with inputfile GEM_2D.inp (inputfiles
folder) 2

(should it change it? Is

magnetic field energy decreasing? What about
kinetic energy?): open the text file
ConservedQuantities (the second column is the
total energy)

Goal of Exercise

* Looking for signatures of magnetic
reconnection:

— Which are the quantities and pattern of magnetic

reconnection? i.e.: Which components of the
electric or magnetic field field, densities?

Task 1 — Movie of the Hall Field
Intensity

vtk files are already available in GEM-Results-
iPIC3D.zip file. You can run (full simulation
approx 30 minutes)

Open B*vtk files in paraview, select the Bz
component.

Add grid, colorbar, change colormap
Add Annotate time filter

Save animation in avi format

Task 1 —Something like this...

Task 2 — Reconnection Electric Field

Task 3 - Electron Density (rhoe)

Task 4

e Calculate the parallel (to what?) electric field

* how do you that ?
— Load E and B files
— Select them both and use filter Append Attributes
— Use the Calculator on the append attributes
— Make an animation of E,

