

Tracing the flow of energy through magnetotail reconnection

Jonathan P. Eastwood

The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK

Co-authors:

T. D. Phan, J. F. Drake, M. A. Shay, A. L. Borg, B. Lavraud, M. G. G. T. Taylor,

M. V. Goldman, H. Hietala, D. L. Newman, R. Mistry, and G. Lapenta

11 August 2015 Nordita reconnection workshop

Introduction

- Magnetotail reconnection can be divided into three interacting regions:
 - the diffusion region in the vicinity of the X-line
 - the exhaust (see talk by Hietala this morning)
 - the dipolarization front, where the exhaust leading edge interacts with the pre-existing plasma

How does reconnection partition energy?

- Energy partition
 - A basic problem in plasma physics.
 - Relevant for observations which rely on only one component of the plasma.
- MHD scaling and resistive MHD simulations show equipartion between kinetic energy flux and enthalpy flux in the outflow ($\beta_{inflow} \rightarrow 0$) [*Priest & Forbes*, 2000; *Birn et al.*, 2005, 2009].
- More generally, enthalpy flux exceeds kinetic energy flux (hybrid simulations) [*Aunai et al.*, 2011].
- The outward Poynting flux is considered negligible, in part because scaling arguments lead to the conclusion that the magnetic field in the outflow is small.
- But the Poynting flux is quite large?

THEMIS substorm timing results

26 February Substorm

- Angelopoulos et al., 2008
- Lui et al., 2009

An interesting point

- $c_A \sim 500 \text{ km/sec}$
- 20 $R_e \Rightarrow$ 200-300 sec transit time
- Reconnection onset to Auroral Intensification took 96 sec.

How is this possible?

- Angelopoulos et al. mention kinetic Alfven waves.
- Lui et al.: current disruption

Further studies [*Lin et al.*, 2009; *Kepko et al.*, 2009; *Nishimura et al.*, 2010] not conclusive

Event	Observed time (UT)	Inferred delay (seconds since 04:50:03 UT)	
Reconnection onset	04:50:03 (inferred)	$T_{\rm Rx} = 0$	
Reconnection effects at P1	04:50:28	25	
Reconnection effects at P2	04:50:38	35	
Auroral intensification	04:51:39	$T_{AI} = 96$	
High-latitude Pi2 onset	04:52:00	117	
Substorm expansion onset	04:52:21	$T_{\rm EX} = 138$	
Earthward flow onset at P3	04:52:27	144	
Mid-latitude Pi2 onset	04:53:05	182	
Dipolarization at P3	04:53:05	$T_{\rm CD} = 182$	
Auroral electroject increase	04:54:00	237	

Angelopoulos et al., Science, 2008.

T_{FX}=138s Magnetotail lobe T_{A1}=96s $T_{Rx} = 0$ P4 P3 Neutral sheet GSM[RE] P2 P1 Plasma sheet T_{CD}=182s N $X_{GSM}[R_E]$ -15 -25 0 -5 -10 -20

[Shay et al., Phys. Rev. Lett., 107, 065001, 2011]

Two Reconnection 'Signals'

Reconnection starts in the middle of the frame; two jets (related to the Alfvén wave signal) develop and propagate to the left and right. This starts at t = 100 and grows to fill the box by the end of the animation.

Close examination reveals an earlier signal (see for example at t = 90): pairs of thin light-blue lines extending from the reconnection site to the left and right edges of the box.

Enhanced Poynting flux near the edge of the jet associated with KAW-like signature

Ion diffusion region: Cluster observations

- Survey the Cluster dataset from 2001-2005 for diffusion region encounters
- Identified 18 anti-parallel diffusion regions
- During each encounter the spacecraft crossed the region in a different way
- Can piece them all together to get overall picture

[Eastwood et al., J. Geophys. Res., 115, A08215, 2010]

Geometry

$$H_{s,x} = (U_s + P_s) v_{x,s} = \frac{\gamma}{\gamma - 1} P_s v_{x,s}$$
$$K_{x,s} = \left(\frac{1}{2} m_s n_s v_{x,s}^2\right) v_{x,s}$$
$$S_x = \frac{(\mathbf{E} \times \mathbf{B})_x}{\mu_0} = \frac{E_y B_z - E_z B_y}{\mu_0}$$

Non-thermal components in the magnetotail diffusion region are negligible compared to the ion kinetic energy [*Oieroset et al.*, PRL, 2002], and so this is neglected in the present calculations.

$$S_x^{MHD} = E_y B_z / \mu_0$$

Energy partition

 $v_{i,x} < 0$ = tailward position, $v_{i,x} > 0$ = Earthward position

 $|K_{i,x}|$ and $|H_{i,x}|$ rise with $|v_{i,x}|$. $|H_{e,x}|$ smaller than $|H_{i,x}|$

 $|S_x| > |S^{MHD}_x|$

 $|K_{e,x}|$ is 10² smaller than any of the other energy fluxes

Energy partition (scaled)

$v_{i,x}^{\prime a}$	$K'_{i,x}$	$H'_{i,x}$	$H'_{e,x}$	$Q'_{e,x}$	S'_x
 0.45	0.04	0.24	0.09	0.09	0.10
 -0.45	-0.08	-0.43	-0.18	-0.01	-0.07

$$\mathbf{B}' = \mathbf{B}/B_L$$

$$n' = n/n_c$$

- $\mathbf{v}' = \mathbf{v}/v_A(B_L, n_c)$
- $\mathbf{E}' = \mathbf{E}/(B_L V_A)$

$$m' = m/m_i$$

 $E_F' = (\mu_0/V_A B_0^2) E_F$

doi:10.1103/PhysRevLett.110.225001

Energy partition (scaled) – 2 dimensional maps

•
$$H'_{i,x} > H'_{e,x}$$

• $H'_{e,x} > K'_{i,x}$

•Poynting flux

- Hall effects increase the size of S'_x and make it an important component of the outflow.
- Clear bifurcation in the Earthward S'_x
- In localized regions, S'_x is comparable to H'_{i,x} and greater than K'_{i,x}, dominating certain regions of the jet.

[*Eastwood et al., Phys. Rev. Lett.*, **110**, 225001, 2013]

The dipolarization front (Earthward propagating)

- Rapid increase in B_z GSM
 - Separates pre-existing plasma sheet from the fast, rarefied, heated BBF
 - Propagates coherently
 - Wave-particle interactions
 - Electron acceleration and heating
- Ion physics ions have the energy!
 - DFs reflect ions back into the high-density pre-existing plasma sheet [e.g. Zhou et al.]
 - Theoretical studies: test particle [Zhou et al.], MHD [Birn et al.], Ion kinetics
 [Nakamura], PIC [Wu & Shay]
- Compare multipoint experimental observations of a DF with a PIC simulation of reconnection onset

Observations: 27 February 2009 – Runov et al. 2009

Clean and uncontroversial DF event

Imperial College

London

P1 and P2 magnetic field timeseries

- $|B_{xGSM}|$ similar: equal distance from $B_{xGSM} = 0$ plane
- Lobe field strength
 - B_L~25–30 nT,
 - f_{ci} = 0.42 Hz
- Current sheet density
 - n~0.8 /cm³
 - d_i~255 km
- Characteristic Alfvén speed ~670 km s⁻¹.
 - v_{DF}~314 km s⁻¹
- s/c separation
 - Δx ~3.4 RE ~85 d_i
 - Δt ~69 s ~29 f_{ci}⁻¹

Comments on spacecraft data

- Similar features observed by THEMIS P1.
 - NB Temperature anisotropy does not reflect the existence of the counterpropagating beams
- Size:
 - Durations correspond to a spatial scale of ~2.1–2.4 RE or ~52–60 di in xGSM
 - Direct confirmation that this is a discrete region (P1 exits before the DF reaches P2)
 - Counterpropagating beam region changes little in size from P1 to P2
 - Survives in quasi-dynamic equilibrium for tens of ion gyroperiods
- Electric field
 - Strong short-period fluctuations at the DF itself
 - Otherwise appears to be largely frozen-in
 - No obvious hint of the underlying structure in the ion plasma

Reconnection simulation

Parsek2d implicit PIC code

•
$$\partial/\partial z_{SIM} = 0$$

•
$$B_{zSIM} = B_g = 0.1$$

 Te~1 keV and Ti~5 keV (for physical electrons)

- Conversion
 - between GSM and SIM:
 - $X_{GSM} = X_{SIM}$

•
$$y_{\text{GSM}} = - Z_{\text{SIM}}$$

• $Z_{GSM} = Y_{SIM}$

Cuts through the DF

y = 14 and y = 16 compare best with data

Dist. function comparison

- Distributions:
 - Comparing simulation + expt. is not trivial
 - Simulation: instantaneous & integrated
 - Experimental: accumulated & cuts
 - Different coordinate systems
 - these formats reveal the structure most cleanly
- Low density side:
 - peaks at +v_{xSIM}/+v_{ySIM} and +v_{xSIM}/v_{ySIM}
 - speeds ~ Alfvén speed
 - magnetic field is dominated by B_{ySIM}
 - separated in velocity space ~along the magnetic field.
- Consistent with experimental data
 - Same found for THEMIS P1

lon dynamics

Back- and forward tracing of ion trajectories passing through cross-over point at t = 30Reconnection electric field also shown

Black & Red ion beam:

- Initially part of the unperturbed thermal population on the flanks of the Harris sheet
- Accelerated in z_{SIM} by reconnection E field (into board)
- Driven toward the midplane of the current sheet by the Lorentz force associated with
- B_{xSIM}, creates v_{ySIM}
- Closer to the midplane, B_{ySIM} enhanced
 - Ion beam velocity rotates to the $+x_{SIM}$ direction by the $v_{zSIM} \times B_{ySIM}$

lons not frozen in.

lon dynamics

- Green ion beam
 - Adjacent to the DF at t ≈ 30 (when black and red beams cross)
 - Undergoes 'standard'
 reflection
- "Hall" electric field (E_{ySIM}) extends well past the front
- The counterpropagating ion beams don't cross the separatrices from the inflow region
- Come from the preexisting plasma sheet
- The limited DF extent perp. to jet means that in fact the two plasmas can mix.

Ion kinetic energy time history

- When black and red beams cross at t ≈ 30, both have gained significant energy and continue to gain energy
- By t ≈ 40:
- Black beam has been rapidly thermalized, energetic particles ahead of DF
- **Red** beam particles on low-density side of the DF, forms part of the reconnection jet
- Green beam particles more energetic, but black beam more dispersed in energy. Energies comparable to previous observations [Zhou et al., 2010]

Conclusions

- Counter-propagating ion beams exist in a macroscopic volume (52 60 di) in the jet leading edge
 - Observed at P1 and P2 (separation 69 s = 29 ion gyroperiods, 3.4 Re = 85 di)
 - Not reflected in the ion moments
 - Observed at other DF events reported in the literature
- Very good agreement between spacecraft data and simulations
- Beams sourced from pre-existing plasma sheet
 - Ions accelerated by reconnection electric field, gyrate around the edge of the DF into the jet. Do not cross the separatrices
 - May subsequently overtake the DF
- The jet entrains the pre-existing plasmasheet
- BBF not an isolated bubble of separate low-entropy plasma propagating earthward