

Localized strong energy conversion regions and their use for identifying reconnection sites

M. Hamrin, L. Andersson, A. Vaivads, T. Pitkänen

e-mail: <u>maria.hamrin@space.umu.se</u> Department of Physics, Umeå University, Umeå, Sweden

- Use of power density E·J as a method (primary indicator) for identifying potential reconnection events from large amounts of measured spacecraft data.
- Approximate criterion for tail reconnection: E·J positive and large, E·J>~20 pW/m³ (consistent with theoretical arguments).
- E·J easily computed from multi-spacecraft data, e.g. MMS and Cluster.

Introduction: Reconnection

- Reconnection is a fundamental process.
- Change in magnetic topology. Magnetic \rightarrow kinetic energy.
- Goal for MMS, Magnetospheric Multiscale Mission: Understanding reconnection.
- How to identify potential events from large sets of data?
 - Look for jet reversals, Hall E and B fields, ...
 - Look for signatures of plasma acceleration!

Reconnection load

- Physical process: Plasma energization at reconnection.
- Right: Acceleration of ions in ion/fluid picture.
- Strong localized energy conversion regions can be probed with E·J.
- Reconnection region should manifest itself as a load E·J>0 (accelerated jets).

Typical tail reconnection picture:

[Wygant et al., JGR 2005]

Reconnection load in simulations

Tail reconnection load (typical energy change)

Reconnection load (ion scales): E·J~(10nA/m²)·(2mV/m)~20pW/m³

> This is larger than typical values in plasma sheet [Hamrin et al., JGR 2011]

Example: October 1, 2001

Example: October 1, 2001

- Cluster observations, ~22.4 MLT. ٠ Several Cluster crossings due to tail flappings. [Wygant+, JGR 2005]
- Intense E_{norm} (±60mV/m) observed ٠ in the ion decoupling region. 4-6 kV potential drop
- Ballistic acceleration of ions. ٠
- Evidence for accelerated ion • beams by **E**_{norm}.

Electric equipotentials in YZ plane

Example: October 1, 2001

- Specific event 09:47-09:51 UT also studied by Runov et al. [GRL, 2003].
- Observed:
- Plasma jet reversals,
 - Bifurcated current sheet
 - Hall B_y at passages A, C, D
- Verified: current density can be computed with multi-spacecraft Curlometer method $J \sim \nabla \times \mathbf{B} / \mu_0$.

Details: October 1, 2001

- Main Wygant and Runov event in yellow. $\frac{1}{m}$
- Tail flappings
- Jet reversals
- Power density E·J using
 - ${\bf J}$ from Curlometer and ${\bf E}$ from
 - CIS E~-VxB (frozen-in) [black]
 - EFW (direct **E** measurements) [red]

- Power density is positive and large!
- **E**•**J**>20 pW/m³ in general.

Typical scenario

cluster

- Assume L~1200km
- V_{sat}~1km/s
- Time for Cluster to pass through diffusion region: $T\sim L/V_{sat}\sim 20min$

Recurrent Cluster sampling diffusion region

40

20

-20 20

Bx [nT]

C3 C4

 Tail flappings → Recurrent Cluster observations of the diffusion region.

NME

Can we trust the Cluster measurements?

• Electric field:

- EFW:

Direct measurements of **E**. Full vectors not always available. Cannot measure \mathbf{E}_{para} . ($\mathbf{E} \cdot \mathbf{B} = 0$)

CIS (HIA, CODIF):
 E=-V×B frozen-in condition.
 Generally available.
 Cannot measure E_{nara}.

Current density:

- Curlometer:

Generally operational. Simple to use. Smoothening: Resolves Cluster scales.

Single-spacecraft method:
 Only operational at current sheets.
 Higher resolution.

Improvements with MMS?

- 3D E field measurements.
- Smaller tetrahedron: more accurate Curlometer for small scale regions.

Cluster details: Electric fields

- October 1, 2001: Main Wygant and Runov event in yellow.
- Full resolution E (25Hz) from EFW
 [gray]
- CIS E [blue/cyan] underestimates
 EFW spin-averaged estimate [red]
 but follows general trend.
- Qualitative agreement. Same sign.

Cluster details: Current densities

- Multi-spacecraft Curlometer $\mathbf{J} \sim \nabla \times \mathbf{B}/\mu_0$.
- Single-spacecraft currents (5vec/s).
- Cross-tail Curlometer current [red] and single-spacecraft current averaged over C1234 [black].
- Curlometer and single-spacecraft estimate are consistent!
 But Curlometer is more smooth.
- Curlometer quality estimate, ∇·B/∇xB, is generally small.
- Curlometer method can be used. (cf. Runov 2003).
- Qualitative agreement. Same sign.

Recap: The reconnection load

- Using the Culometer J and CIS E=-VxB we find that E(CIS)·J(Curl)>>0 (>~20 pW/m³).
- |**E**(CIS)| < |**E**(EFW)|, same sign
- |J(Curl)| < |J(1-sc)|, same sign
- "True" E·J is possibly even larger than ~20 pW/m³.

- Cluster observations 2001.
- 28 documented Cluster reconnection events in the literature: Borg et al. [Ann. Geophys. 2012], Eastwood et al. [JGR 2010], Østgaard et al. [JGR 2009].
- $-14 < X_{GSM} \le -19R_E$, $|Z_{GSM}| \le 3.5R_E$, $|Y_{GSM}| \le 10R_E$ (except 2 events slightly outside).
- $E \cdot J > 20 pW/m^3$ using CIS **E** (3 events lightly lower).
- **E**·**J** generally >>20 pW/m³ when using EFW **E**. (But full EFW **E** not always available.)

- 14 additional magnetotail reconnection events (or multiple events) found when searching all 2001 Cluster data.
- Cluster data 2002-2004 can also be scanned, but in >2005 Cluster is in multiscale mode. (But more care needed due to successive instrumental degradations.)

					$Max \mathbf{E} \cdot \mathbf{J}$	Samples		
Event	Date	T_1	T_2	X/Y/Z	$[pW/m^3]$	$\mathbf{E} \cdot \mathbf{J} > 20$	Reconnection?	Comment
				$[R_E]$	ČIS/EFW	CIS/EFW		
1	2001-08-03	10:40	11:15	-17/-8.5/2.2	48/48	38/21	Yes	
2	2001-08-05	13:00	14:10	-17/-7.8/5.7	35/27	6/4	Can be	Several sub-events
3	2001-08-07	23:40	00:05	-17/-8.4/2.1	28/38	6/7	Yes	
4	2001-08-12	17:00	18:50	-18/-6.7/3.1	54/47	47/27	Yes	Several sub-events
5	2001-08-17	13:00	15:00	-18/-4.7/2.6	114/71	55/77	Can be	Several sub-events
6	2001-08-31	17:10	17:20	-19/-0.8/2.5	51/79	9/10	Yes	
7	2001-09-02	23:45	00:35	-19/-0.7/3.5	30/26	2/3	Yes	Several sub-events
8	2001-09-07	21:30	22:00	-19/1.2/1.1	21/27	2/4	Yes	
9	2001-09-12	15:10	15:16	-19/2.8/0.5	36/27	3/3	Yes	
10	2001-09-15	03:49	04:35	-19/3.5/-2.0	56/47	44/10	Yes	Several sub-events
11	2001-09-24	00:10	00:20	-14/3.4/ 7.2	30/NaN	5/-	Can be	
12	2001-09-26	22:20	23:10	-18/7.1/-0.4	25/59	2/7	No	
13	2001-10-01	11:40	11:50	-17/8.0/-0.4	26/49	17/24	Can be	
14	2001 - 10 - 08	14:40	14:50	-16/9.7/-0.3	28/24	2/2	Can be	

- Regions of strong and localized energy conversion may be used as an indictor for magnetic reconnection:
 E·J as a method for identifying potential reconnection events from large amounts of measured spacecraft data.
- Signatures should be verified manually by investigating e.g. jet reversals and Hall fields.
- Criterion for tail reconnection: E·J is large (>~20 pW/m³ consistent with theoretical arguments).
- **E**·**J** easily computed from multi-spacecraft data, e.g. MMS and Cluster.
 - J: Curlometer method
 - E: ion moments -VxB (e.g. CIS) or direct measurements (e.g. EFW)
- From a statistical investigation using already documented events (Cluster 2001) we find:
 - $\mathbf{E}\cdot\mathbf{J}$ >~20 pW/m³ using CIS ion moments
 - **E**·J generally >>20 pW/m³ using EFW measurements.
- Several additional events found when scanning all Cluster plasma sheet data from 2001.

Thank you!

e-mail: maria.hamrin@space.umu.se