

Non-diffusive transport of suprathermal ions in turbulent plasmas

Ivo Furno

F. Avino, A. Bovet, A. Fasoli, K. Gustafson, P. Ricci

Centre de Recherches en Physique des Plasmas, EPFL, Switzerland

Nordita Magnetic Reconnection Workshop, Stockholm, Sweden, 10th-14th August 2015

Why suprathermal ions? Why in basic devices?

In fusion plasmas, suprathermal ions are created by

- Fusion reactions (alpha particles) and additional heating (NBI, ICRH)
- Crucial for burning plasmas (heating, non-inductive current drive)

In space and astrophysical plasmas, suprathermal ions are ubiquitous

- Cosmic rays and solar energetic particles
- Can be harmful to spacecraft and are essential for Space Weather

Measurements in fusion devices or astrophysical plasmas are difficult

Basic plasma physics devices allow simpler investigations

- Many details of turbulence and suprathermal ions are directly measured
- Key experimental physics parameters can be varied systematically
- Direct comparison with numerical simulations → code validation

Diffusive and non-diffusive transport

Spreading in time of the particle positions to extract an exponent:

$$\sigma^2 \propto t^{\gamma}$$

Are all these regimes accessible to suprathermal ions?

Which key elements determine the regime?

How can we identify them?

Outline

The TORPEX device, experimental setup and diagnostics

- ideal interchange turbulence
- suprathermal ions source and detector
- Experimental measurements
 - energy dependence of suprathermal ion transport
- Comparison experiments-simulations
 - evidence for super- and sub-diffusive regimes
- Time-resolved measurements
- Conclusions

TORPEX (TORoidal Plasma EXperiment) at CRPP

major radius = 1m, minor radius = 20cm

TORPEX and the simple magnetized torus (SMT)

TORPEX and the simple magnetized torus (SMT)

TORPEX and the simple magnetized torus (SMT)

Helical field lines winding N times around the torus ∇B and curvature → interchange drive

At low N, SMTs are dominated by field-aligned turbulence

7

Ideal interchange regime: waves and blobs

I. Furno, PRL 2008

Ideal interchange regime: waves and blobs

Suprathermal ion source and detector

Suprathermal ion source

Three-dimensional profile of the suprathermal ion beam

Time-averaged meas. Time-resolved meas.

Gridded energy analyzer

3D time-averaged profile at two fast ion energies

3D time-averaged profile at two fast ion energies

3D time-averaged profile at two fast ion energies

The beam spreading is different for different energies

Ion tracers in simulated turbulent fields

Particle spreading in time -> transport regime

Two regimes for fast ion transport are revealed

Gyro- and drift-averaging reduce transport

Gyro-averaging

Drift-averaging

Gyro- and drift-averaging reduce transport

Outline

The TORPEX device, experimental setup and diagnostics

- ideal interchange turbulence
- fast ions source and detector
- Experimental measurements
 - fast ion transport: energy dependence
- Comparison experiments-simulations
 - Evidence for super and subdiffusive regimes
- Time-resolved measurements
- Conclusions

Time-resolved measurements in super- and sub-diffusive regimes

Different statistics in different transport regimes

The ion intermittency is causally related to turbulence

B. Ph. van Milligen, NF 2014

The ion intermittency is causally related to turbulence

The ion intermittency is causally related to turbulence

The entropy transfer is mediated by blobs

A. Bovet, PRL 2014

Conclusions

Simple plasma devices offer **great possibilities** to investigate the fundamentals of suprathermal ion – turbulence physics

On TORPEX, experiments and numerical simulations reveal different **non-diffusive regimes** for suprathermal ions depending on their energy and turbulence amplitude

Gyro- and **drift-averaging** can effectively reduce turbulent transport

Time-resolved measurements reveal the effect of **blob transport**

Link between Eulerian time-resolved measurements (tokamaks, spacecrafts) and 3D time-averaged measurements

Upcoming TORPEX experiments will explore more complex magnetic geometries of direct relevance to tokamaks

The beam is displaced inwards/outwards by the blob ExB

The 30 eV ions are systematically more displaced than the 70 eV ions The displacement is inwards or outwards depending of the position of the blob Larger blobs cause a larger displacement