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In fusion plasmas, suprathermal ions are created by 
§  Fusion reactions (alpha particles) and additional heating (NBI, ICRH) 

§  Crucial for burning plasmas (heating, non-inductive current drive) 
 
In space and astrophysical plasmas, suprathermal ions are ubiquitous 

§  Cosmic rays and solar energetic particles 

§  Can be harmful to spacecraft and are essential for Space Weather 
 
Measurements in fusion devices or astrophysical plasmas are difficult 
 

Basic plasma physics devices allow simpler investigations 

§  Many details of turbulence and suprathermal ions are directly measured 

§  Key experimental physics parameters can be varied systematically 

§  Direct comparison with numerical simulations è code validation 
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Why suprathermal ions? Why in basic devices?!



Diffusive and non-diffusive transport!
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Are a l l these regimes 
accessible to suprathermal  
ions? 

W h i c h k e y e l e m e n t s 
determine the regime? 

How can we identify them? 

γ  =1 “diffusive” 
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Outline!

§  The TORPEX device, experimental setup and diagnostics 
§  ideal interchange turbulence 

§  suprathermal ions source and detector 

§  Experimental measurements 
§  energy dependence of suprathermal ion transport 

§  Comparison experiments-simulations 
§  evidence for super- and sub-diffusive regimes 

§  Time-resolved measurements 

§  Conclusions 
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TORPEX (TORoidal Plasma EXperiment) at CRPP!
major radius = 1m, minor radius = 20cm 

Magnetron 
for plasma 
production 

28 toroidal 
field coils 

4 vertical 
field coils 
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TORPEX and the simple magnetized torus (SMT)!

Bt~800Gauss  

Toroidal coils 
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TORPEX and the simple magnetized torus (SMT)!

Bt~800Gauss  

Toroidal coils 

Bv~10Gauss  

Vertical coils 
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Helical field lines winding N times around the torus 
B and curvature è interchange drive ∇

TORPEX and the simple magnetized torus (SMT)!



€ 

N

Lp

R

Ideal	
  Interchange	
  

Resis0ve	
  Interchange	
  

Dri3	
  

k|| =0 

At low N, SMTs are dominated by field-aligned turbulence!

Hydrogen 
N~2 

Te~5-10eV, Ti<1eV 
ne~3x1016m-3 

Field-aligned turbulence 

P. Ricci and B. Rogers, PRL 2010 7 



Blob region Interchange wave 

High field side Low field side 

Ideal interchange regime: waves and blobs!

8 I. Furno,  PRL 2008 



Ideal interchange regime: waves and blobs!
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Suprathermal ion source and detector!

Three-dimensional profile of 
 the suprathermal ion beam 

 
Time-averaged meas. 
Time-resolved meas. 

Suprathermal ion source Gridded energy analyzer 

Tracer Li6+ ions  
10eV-1keV 
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3D time-averaged profile at two fast ion energies!

Distance from the source = 0.2 m 

E = 70 eV 
E/Te ≈ 46 

source 

detector 

Fast ion injection location 
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Distance from the source = 0.2 m 

E = 70 eV 
E/Te ≈ 46 

source 

detector 

Fast ion injection location 

E = 30 eV 
E/Te ≈ 20 

3D time-averaged profile at two fast ion energies!
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E = 70 eV E = 30 eV 
E/Te ≈ 46 E/Te ≈ 20 

Distance from the source = 2.2 m 

detector 

source 

3D time-averaged profile at two fast ion energies!
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The beam spreading is different for different energies!
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Exp. E = 70 eV 
Exp. E = 30 eV 
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Ion tracers in simulated turbulent fields!

GBS	
  3D	
  fluid	
  code	
  
Electrosta4c,	
  Dri6-­‐reduced	
  Braginskii	
  equa4ons	
  

Tracer	
  trajectory	
  solver	
  
11 P. Ricci,  PoP 2009 



Particle spreading in time è transport regime!
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Two regimes for fast ion transport are revealed!

Exp. E = 70 eV 
Exp. E = 30 eV 

Synthetic diagnostic 70 eV  

Synthetic diagnostic 30 eV  
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Gyro- and drift-averaging reduce transport!

Gyro-averaging 



 
 
 
Drift-averaging 
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Gyro- and drift-averaging reduce transport!

Gyro-averaging 



 
 
 
Drift-averaging Gyro-averaging  

condition 

Drift-averaging 
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Outline!

§  The TORPEX device, experimental setup and diagnostics 
§  ideal interchange turbulence 

§  fast ions source and detector 

§  Experimental measurements 
§  fast ion transport: energy dependence 

§  Comparison experiments-simulations 
§  Evidence for super and subdiffusive regimes 

§  Time-resolved measurements 

§  Conclusions 



Time-resolved measurements in super- and sub-diffusive regimes!

Time traces of the detector at 40 cm 
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Probability density functions 

Source ON Source OFF 
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E = 30 eV 
superdiffusive 

E = 70 eV 
subdiffusive 

Time-averaged 
Current density [A/m2] 

Skewness profile 

Poloidal cross sections 
at 40 cm from the source 

«Crown» of high skewness 

Different statistics in different transport regimes!
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The ion intermittency is causally related to turbulence!

Transfer 
Entropy 

 
HEXèGEA 

B. Ph. van Milligen, NF 2014 

time [4micro-s] time [4micro-s] 

HEX GEA 
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time [4micro-s] time [4micro-s] 

The ion intermittency is causally related to turbulence!
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time [4micro-s] time [4micro-s] 

The ion intermittency is causally related to turbulence!
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The entropy transfer is mediated by blobs!

E = 30 eV  
superdiffusive 

E = 70 eV 
subdiffusive 

A. Bovet, PRL 2014 18 



Conclusions!

Simple plasma devices offer great possibilities to investigate 
the fundamentals of suprathermal ion – turbulence physics 

On TORPEX, experiments and numerical simulations reveal 
different non-diffusive regimes for suprathermal ions depending 
on their energy and turbulence amplitude 

Gyro- and drift-averaging can effectively reduce turbulent 
transport 

Time-resolved measurements reveal the effect of blob transport 

Link between Eulerian time-resolved measurements (tokamaks, 
spacecrafts) and 3D time-averaged measurements 

Upcoming TORPEX experiments will explore more complex 
magnetic geometries of direct relevance to tokamaks 



The beam is displaced inwards/outwards by the blob ExB!

Radial displacement of  
the beam center 
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superdiffusive 
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The 30 eV ions are systematically more displaced than the 70 eV ions 
The displacement is inwards or outwards depending of the position of the blob 

Larger blobs cause a larger displacement 

Blobs are associated with a 
potential dipole 

Density 
monopole 

Potential 
dipole 
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