

Electron acceleration in the separatrix region during magnetic reconnection

Rongsheng Wang, Quanming Lu

University of Science and Technology of China

Contributors: A. Du, R. Nakamura, Y. V. Khotyaintsev, W. D. Gonzalez, M. Volwerk, W. Baumjohann

Outline

- 1. Introduction to the separatrix
- 2. Electron distribution in the separatrix region
- 3. Parallel electric field/Double Layers detected near the separatrices
- 4. Discussion & Conclusions

1. Introduction to the separatrix

The separatrix is the surfaces (lines in 2D) separating the plasma not yet entered into the reconnection region from the plasma already processed by reconnection.

Separatrices: the channels of inflowing electrons with low energy

[Lindstedt et al., 2009]

1. Introduction to the separatrix

Magnetotail

Inflowing electron beam

Ζ Low-Energy Electrons High-Energy Electrons X Earth Tail Electrons Electrons -18.5 B B -22.0 -18.5 -18.5 80000 km/s -80000 0 Tail Earth TS 1332:07 UT -22.0 ó 80000 km/s Earth 1335:35 UT Tail

PIC Simulation

[[]Nagai et al., 2001]

[[]Lu et al., 2006]

Introduction to the separatrix 1.

Electron density cavity along the separatrix

PIC Simulation

[Lu et al., 2010]

[Retino et al., 2006]

1. Introduction to the separatrix

[Fujimoto et al., 2006]

[[]Huang et al., 2014]

1. Introduction to the separatrix

"Electrons are accelerated in the acceleration cavities and are therefore capable of reaching **relativistic energies**."

2. Electron distribution in the separatrix region

(b) Cavity

The energy \rightarrow 10 keV

Inflowing electrons might have been accelerated in the separatrix region.

[Wang et al., 2012]

2. Electron distribution in the separatrix region

A guide field reconnection 17/AUG/2003

2. Electron distribution in the separatrix region: 1st crossing

- 1. A thin current layer in the separatrix region
- 2. Inflowing electron beam with energy up to 200 keV
- 3. Multiple density sub-cavities along the separatrix
- 4. The strong electric field fluctuations

[Wang et al., GRL 2013]

2. Electron distribution in the separatrix region: 1st crossing

5. Fluxes of energetic electrons are enhanced in the separatrix region

[Wang et al., GRL 2013]

2. Electron distribution in the separatrix region: 2nd crossing

- 1. A thin current layer in the separatrix region
- 2. Inflowing electron beam with energy up to 100 keV
- 3. The strong electric field fluctuations

How the electrons are accelerated near the separatrix ?

3. Parallel electric field/Double Layers detected near the separatrices

Schematic picture of a double layer

Negative charge Positive charge

An electric double layer (DL): a narrow localized region in plasma which sustains a large potential jump , i.e. an electric field

[Block, 1977]

3. Parallel electric field/Double Layers detected near the separatrices

DL: downward current region of aurora

DL: Magnetotail

Andersson et al., POP 2002

Ergun et al., PRL 2009

3. Parallel electric field/Double Layers detected near the separatrices

Multiple sub-cavities; The $E_{//}$ observed just within one of the sub-cavities

Wang et al., GRL 2013

A short period of 15 sec when angles between the spacecraft spin plane and the magnetic field $< 5^{\circ}$; $E_{//}$ and one component of E_{\perp} can be estimated.

Three **Double Layers** (E1-E3) are identified in the second crossing of the separatrix

Signature: a unipolar $E_{//}$ followed by a series of bipolar $E_{//}$ E1: DL ~ 100 ms The unipolar $E_{//}$: Double Layer; the bipolar $E_{//}$: Electron hole E2: DL~50ms

The DLs and Ehs velocity cannot be estimated by time delay of two probes Polarity of Ehs: first positive then negative, moving parallel to magnetic field

[Wang et al., GRL 2014]

An electron beam observed right within the DL

Assuming the DLs are moving towards X-line, EHs would be at the low potential side of DL, contrary to previous observation and theory. So, the DLs are moving away from the X-line

Wang et al., 2014

DL: $E_{//}$ ~ - 20 mV/m, $\Delta t \sim 100$ ms

The velocity of the DL $v_{//} = \Delta U / (\Delta t \cdot E_{//}) \approx$ -150 - -1000 km/s (underestimated), comparable to the ion acoustic speed 800 km/s.

DL Size : $12.5 \sim 62.5 \quad \lambda_D$ electron Debye length

Double Layers are created repeatedly during reconnection and propagate away from the X-line. Electrons could experience numerous DLs while they are moving towards the X-line, and accelerated to high energy.

Wang et al., 2014

Wang et al., GRL 2014

4. Discussion & Conclusion

By using several magnetic reconnection events in the magnetotail, we studied electron acceleration during reconnection. The main conclusions:

1.Electrons have already been accelerated (up to 100 keV) in the separatrix region, while they are flowing towards the X-line

2. There are multiple sub-cavities in the separatrix region. The electron acceleration might be closely associated with the sub-cavities.

4. Discussion & Conclusion

3. The parallel electric field directed away from the X-line could be responsible for the electron acceleration.

4. Double Layers are created repeatedly during reconnection and propagate away from the X-line. Electrons could experience numerous DLs while they are moving towards the X-line, and be accelerated to high energy.

5. EHs are gathering towards the X-line, might play a role in anomalous resistivity by scattering electrons in reconnection.

中国納孕战术大学 University of Science and Technology of China

Thank you !