Statistics and accuracy of magnetic null identification

Elin Eriksson^{1,2}, Andris Vaivads², Yuri Khotyaintsev², Volodymyr Khotyayintsev³ and Mats André²

¹Uppsala University, Department of Physics and Astronomy, Uppsala, Sweden ²Swedish Institute of Space Physics (IRF), Uppsala, Sweden ³Department of Theoretical Physics, Taras Shevchenko National University of Kyiv, Ukraine

UPPSALA

UNIVERSITET

elin.eriksson@irfu.se

Magnetic Reconnection in Plasmas Stockholm 10-14 August 2015

- Introduction
 - Magnetic nulls
 - Type
 - Why
- Statistics
 - Locating nulls
 - Conditions
 - Results
 - Data Examples
- Type identification
 - Accuracy method
 - Example
- Conclusions

Introduction - Magnetic Nulls

× °

(b)

Regions with vanishing magnetic field values are referred to as **magnetic nulls**.

(Lau and Finn, ApJ, 1990)

Introduction - Type

The type of the magnetic nulls are identified using Lau and Finn's, ApJ, 1990, classification by calculating the eigenvalues of ∇B .

	$\frac{\partial B_x}{\partial x}$	$rac{\partial B_x}{\partial y}$	$\frac{\partial B_x}{\partial z}$
$\nabla \mathbf{B} =$	$\frac{\partial B_{y}}{\partial x}$	$rac{\partial B_y}{\partial y}$	$rac{\partial B_y}{\partial z}$
	$\frac{\partial B_z}{\partial x}$	$rac{\partial B_z}{\partial y}$	$\frac{\partial B_z}{\partial z}$

(Lau and Finn, ApJ, 1990)

- Useful tool to characterize complex 3D magnetic topologies
- Important in 3D reconnection

Statistics - Locating Magnetic Nulls Poincaré Index

The most common method used to locate a magnetic null is by calculating the Poincaré index (PI), a multiple spacecraft method.

- $PI = \pm 1 \Rightarrow Odd$ number of nulls enclosed
- $PI = 0 \implies$ Even number of nulls enclosed

Statistics - Locating Magnetic Nulls Taylor Expansion

Taylor Expansion (Fu et al., JGR, 2015) $r_{null} = r - \nabla \mathbf{B}^{-1} \mathbf{B}.$

	$\frac{\partial B_x}{\partial x}$	$rac{\partial B_x}{\partial y}$	$\frac{\partial B_x}{\partial z}$
$\nabla \mathbf{B} =$	$\frac{\partial B_{y}}{\partial x}$	$rac{\partial B_y}{\partial y}$	$rac{\partial {\pmb B}_y}{\partial z}$
	$\frac{\partial B_z}{\partial x}$	$rac{\partial B_z}{\partial y}$	$rac{\partial B_z}{\partial z}$

Data: Fluxgate Magnetometer (FGM) from all Cluster spacecraft between July 1, 2003 and January 1, 2004.

Magnetotail: X < -4 RE and |Z|<10 RE.

Constraint:
$$\left| \frac{\nabla \cdot \mathbf{B}}{\max(|\lambda_i|)} \right| << 1$$

• limit chosen as 0.4

Statistics - Results

- More magnetic nulls in the magnetopause current sheet.
- 735 data points of nulls with TE method.
- 84 of those data points correspond with all the nulls found with PI.
- 80% identified as spiral types.

Event I

Type identification – Accuracy method (1)

 $\nabla \mathbf{B}$ for each data point rotated into the nulls coordinate system.

The currents in the tensor refers to the currents parallel and perpendicular to the spine of the null, while j_{th} is a defined threshold current by Parnell et al., PhPl, 1996 and given by:

$$j_{th} = \sqrt{(p-1)^2 + q^2}.$$

$$\mathbf{B} = \mu_0 s \begin{bmatrix} 1 & \frac{1}{2}(q - j_{II}) & 0\\ \frac{1}{2}(q + j_{II}) & p & 0\\ 0 & j_{\perp} & -(p+1) \end{bmatrix}$$

(Parnell et al., PhPl, 1996)

Type identification – Accuracy method (2)

Basic concept: compare typical magnetic fluctuations seen in the data with theoretical minimum disturbances capable of altering the type of the null.

• Theoretical minimum disturbance capable of shifting between spiral and non-spiral null type:

 $\delta B_1 = \mu s L (j_{II} - j_{th})$

• Theoretical minimum disturbance capable of shifting between A-kind (A/As) and B-kind (B/Bs):

$$\delta B_2 = \min(|B_{ij} \cdot (B_{ik} \times B_{il})| / |(B_{ik} \times B_{il})|)$$

where $B_{ij} = B_j - B_i$ and i,j,k,l are arbitrary permutations of the four spacecraft (1,2,3,4)

Type identification – Example

Event II: $\delta B_1 = 7 \text{ nT}$ $\delta B_2 = 2.2 \text{ nT}$

Event I: $\delta B_1 = 0.3 \text{ nT}$ $\delta B_2 = 0.5 \text{ nT}$

- Only expect a missidentification in Event I
- At least 70% of the magnetic nulls have reliable type-identification.

Conclusions

- Magnetic nulls were found in both the tail current sheet and in the magnetopause current sheet with about one null per each few current sheet crossings
- The percentage of observed nulls identified as spiral nulls (As and Bs) is close to the percentage from a fully random magnetic field, suggesting that physical processes responsible for the null formation do not favor the formation of particular types of nulls
- The reliability of a null type identification can be estimated by comparing observed local fluctuations of the magnetic field for a particular event with the minimum theoretical disturbances required to alter the null type, δB_1 and δB_2 .