Dependence of magnetic dissipation on magnetic Prandtl number

What gets in, will get out Even for vanishing viscosity What if magnetic fields contribute?

> Axel Brandenburg (Nordita, Stockholm)

Finite dissipation at vanishing viscosity

$$\frac{d}{dt} \langle \rho \mathbf{u}^2 / 2 \rangle = \langle \rho \mathbf{u} \cdot \mathbf{f} \rangle - \langle \rho v \boldsymbol{\omega}^2 \rangle$$
if $\mathbf{v} \neq 0$ then $\boldsymbol{\omega}^2 \neq \text{infty}$

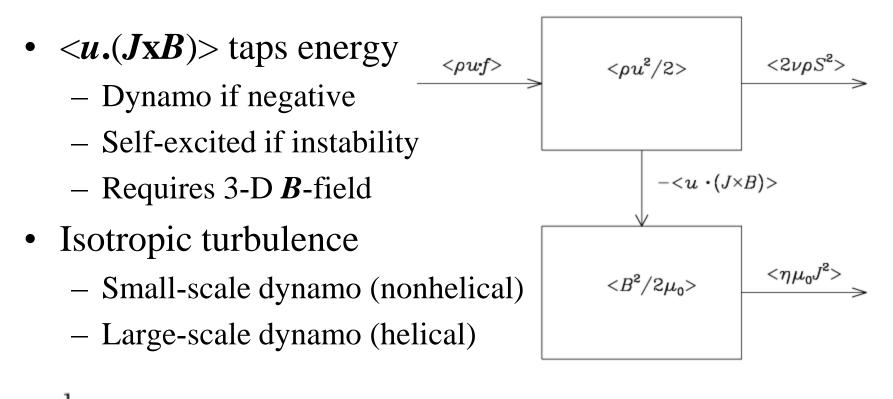
$$\langle 2\rho v \mathbf{S}^2 \rangle$$

Traceless rate-of-strain tensor $S_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) - \frac{1}{3} \delta_{ij} u_{k,k}$

How is this modified by magnetic fields?

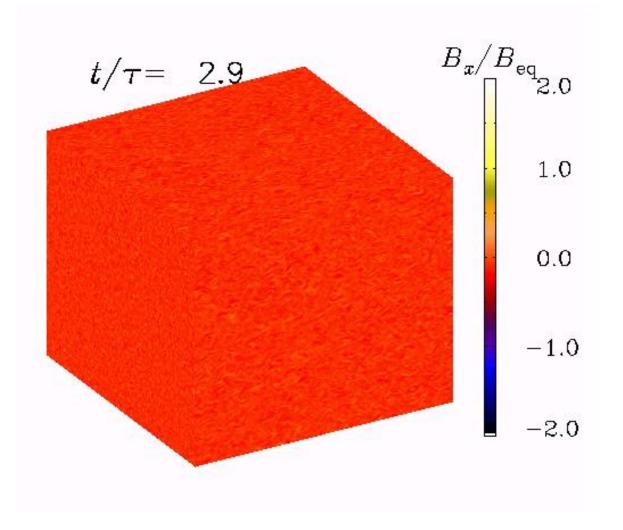
- Smaller η , more J, same dissipation
- Or: dynamo stronger, more dissipation
- Or: less dissipation ←

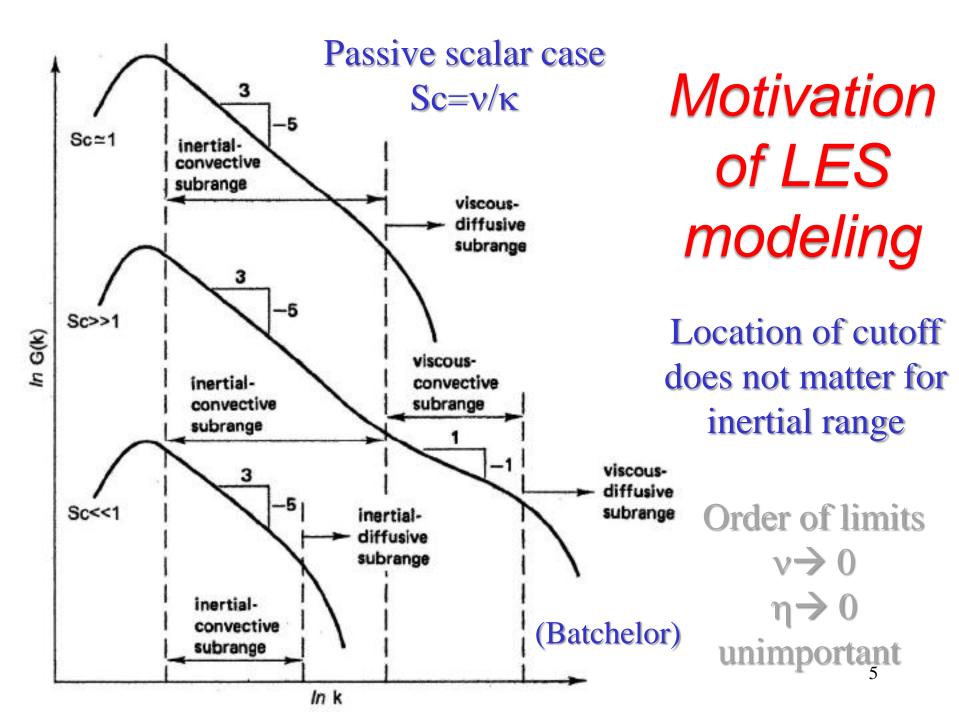
Couple to B-field



$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \rho \boldsymbol{u}^2 / 2 \rangle = \langle p \boldsymbol{\nabla} \cdot \boldsymbol{u} \rangle + \langle \boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) \rangle + \langle \rho \boldsymbol{u} \cdot \boldsymbol{f} \rangle - \langle 2\rho \nu \boldsymbol{S}^2 \rangle,$$
(6)
$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \boldsymbol{B}^2 / 2\mu_0 \rangle = -\langle \boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) \rangle - \langle \eta \mu_0 \boldsymbol{J}^2 \rangle,$$
(7)

Inverse cascade





Coupling to B-field

- Magnetic dissipation depends on work term
 - Independent of microphysics?
 - Basic assumption of LES and iLES
 - e.g., hyperdiffusion (Galsgaard & Nordlund 1996)
- Not confirmed by DNS
 - Ratio scales with v/η
 - Either ν or η fixed
 - What if replace Spitzer by Hall?

Inverse cascades and α effect at a low magnetic Prandtl number

P. D. Mininni

NCAR, P.O. Box 3000, Boulder, Colorado 80307-3000, USA (Received 13 February 2007; revised manuscript received 25 June 2007; published 24 August 2007

Dynamo action in a fully helical Arn'old-Beltrami-Childress flow is studied using both direct num simulations and subgrid modeling. Sufficient scale separation is given in order to allow for large-scale netic energy buildup. Growth of magnetic energy obtains down to a magnetic Prandtl number $P_M = R$ close to 0.005, where R_V and R_M are the kinetic and magnetic Reynolds numbers. The critical mag Reynolds number for dynamo action R_{M}^{c} seems to saturate at values close to 20. Detailed studies c dependence of the amplitude of the saturated magnetic energy with P_M are presented. When P_M is decre ω numerical experiments are conducted with either R_V or R_M kept constant. In the former case, the rat magnetic to kinetic energy saturates to a value slightly below unity as P_M decreases. Examination of e spectra and structures in real space reveals that quenching of the velocity by a large-scale magnetic field place, with an inverse cascade of magnetic helicity and a force-free field at large scale in the saturated re

DOI: 10.1103/PhysRevE.76.026316

PACS number(s): 47.65.-d, 47.27.E-, 91.25.Cw, 95.3

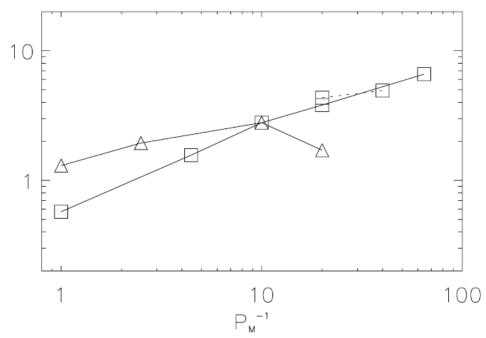


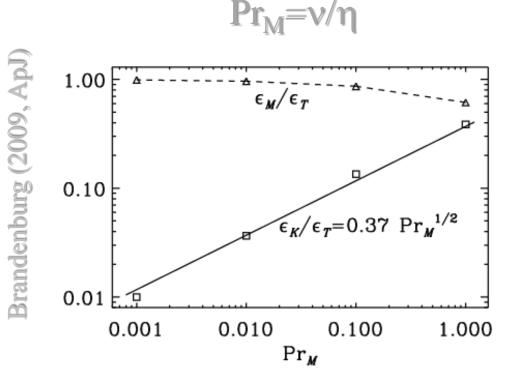
Figure 8 shows the ratio of the magnetic energy dissipation rate ϵ_M to the kinetic energy dissipation rate ϵ_V in the saturated state for the same runs as in Fig. 7. At constant R_V , for small values of P_M , a drop in the ratio is observed as the value of R_M gets closer to the threshold. On the other hand, at constant R_M , more and more energy is dissipated by Ohmic dissipation as P_M is decreased.

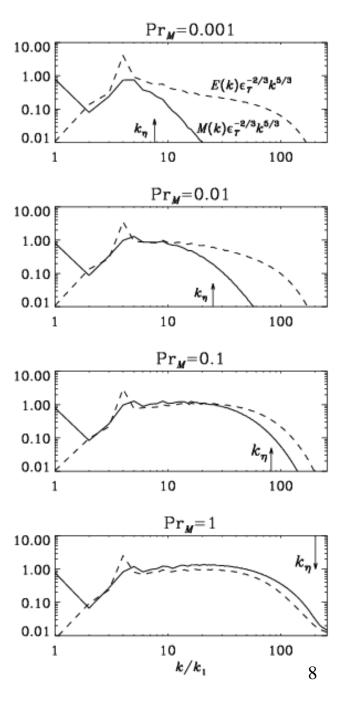
≥

v smaller, v ω^2 smaller, ηJ^2 larger

Numerically difficult?

- Energy dissipation via Joule
 - Viscous dissipation weak
- Can increase Re substantially!





Isothermal MHD

$$\frac{D\ln\rho}{Dt} = -\boldsymbol{\nabla}\cdot\boldsymbol{u},$$

$$\frac{D\boldsymbol{u}}{Dt} = -c_{s}^{2}\boldsymbol{\nabla}\ln\rho - 2\boldsymbol{\Omega}\times\boldsymbol{u} + \boldsymbol{f}$$
$$+\rho^{-1}\left[\boldsymbol{J}\times\boldsymbol{B} + \boldsymbol{\nabla}\cdot(2\nu\rho\boldsymbol{S})\right]$$

Forcing: helical or nonhelical

,

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{u} \times \boldsymbol{B} - \eta \mu_0 \boldsymbol{J},$$

where $D/Dt = \partial/\partial t + \boldsymbol{u} \cdot \boldsymbol{\nabla}$ is the advective derivative, \boldsymbol{u} is the velocity, $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$ is the magnetic field, \boldsymbol{A} is the magnetic vector potential, $\boldsymbol{J} = \boldsymbol{\nabla} \times \boldsymbol{B}/\mu_0$ is the current density, μ_0 is the vacuum permeability, and

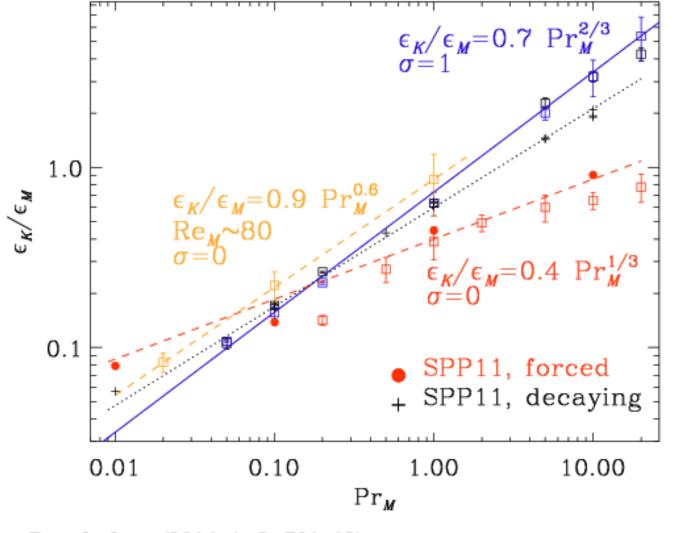
$$\mathsf{S}_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) - \frac{1}{3}\delta_{ij}\boldsymbol{\nabla}\cdot\boldsymbol{u}$$
(4)

is the traceless rate of strain tensor. It is useful to note that

$$\rho^{-1} \nabla \cdot (2\rho \mathbf{S}) = \frac{4}{3} \nabla \nabla \cdot \boldsymbol{u} - \nabla \times \nabla \times \boldsymbol{u} + \mathbf{S} \cdot \nabla \ln \rho, \quad (5)$$

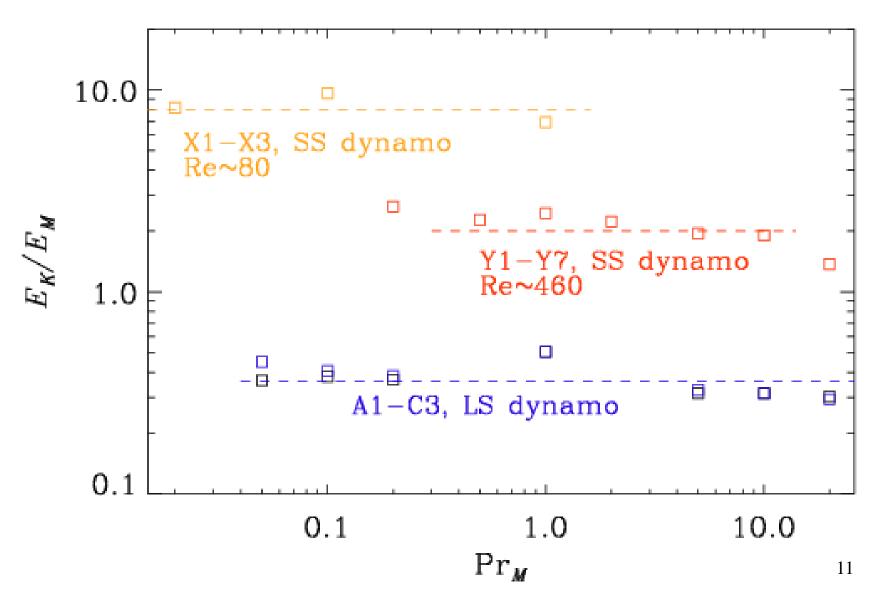
where we call attention to the presence of the 4/3 factor that

Pr_M dependence of dissipation ratio

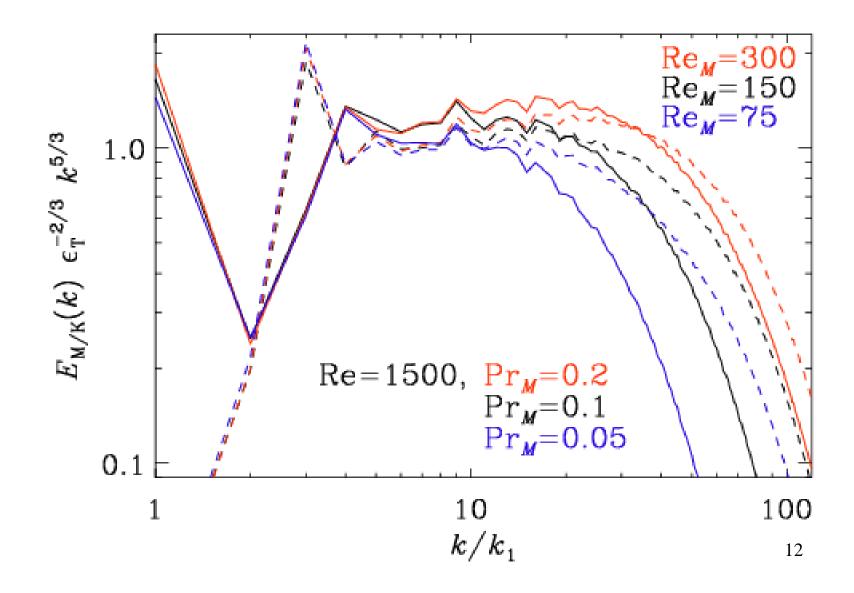


Brandenburg (2014, ApJ, 791, 12) SPP = Sahoo, Perlekar, Pandi (2011)

Energy ratio nearly unchanged



Inertial range -> compensated spectra



2-D MHD (Tran et al, JFM 2013)

this linear behaviour turns out to be fully accessible to numerical simulations. Indeed, the results reported in §4 show a nearly linear decrease of $v \|\omega\|^2$ with v even for moderately small *Pm*. Second, we have

$$\int_0^t \|\nabla j\|^2 \,\mathrm{d}\tau < \infty. \tag{3.10}$$

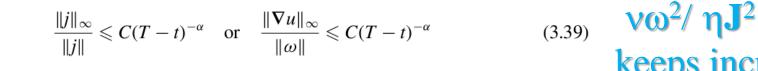
 η smaller,

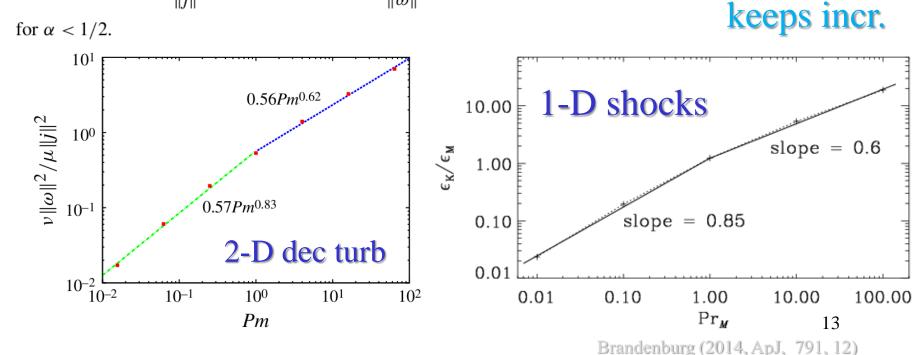
 ν/η larger,

 J^2 finite,

 $nJ^2 \rightarrow 0$

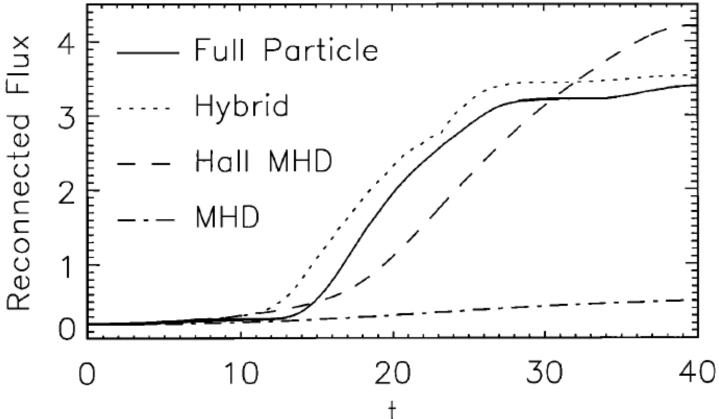
In conclusion, we see that for solution regularity beyond t = T of the 2D MHD system with $Pm = \infty$, it is sufficient to require either





Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge

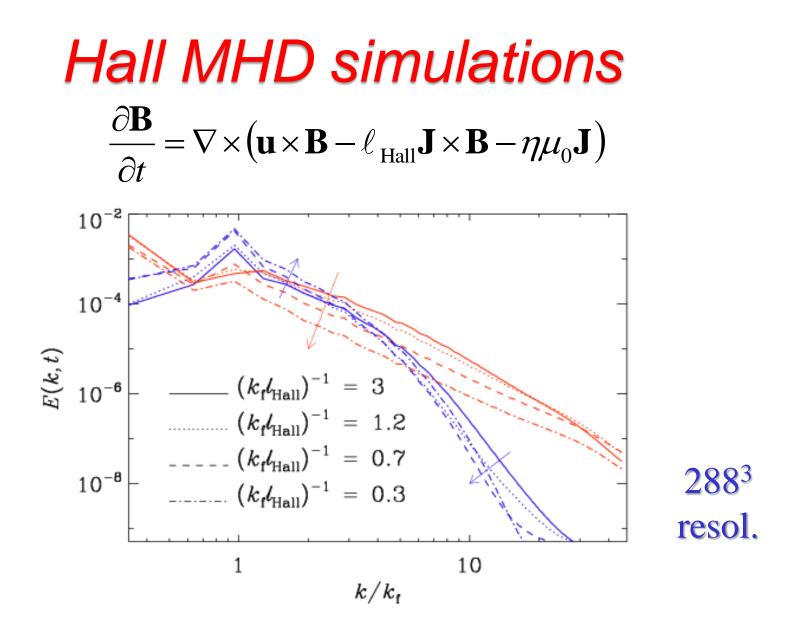
J. Birn,¹ J. F. Drake,² M. A. Shay,² B. N. Rogers,² R. E. Denton,² M. Hesse,³ M. Kuznetsova,³ Z. W. Ma,⁴ A. Bhattacharjee,⁴ A. Otto,⁵ and P. L. Pritchett,⁶



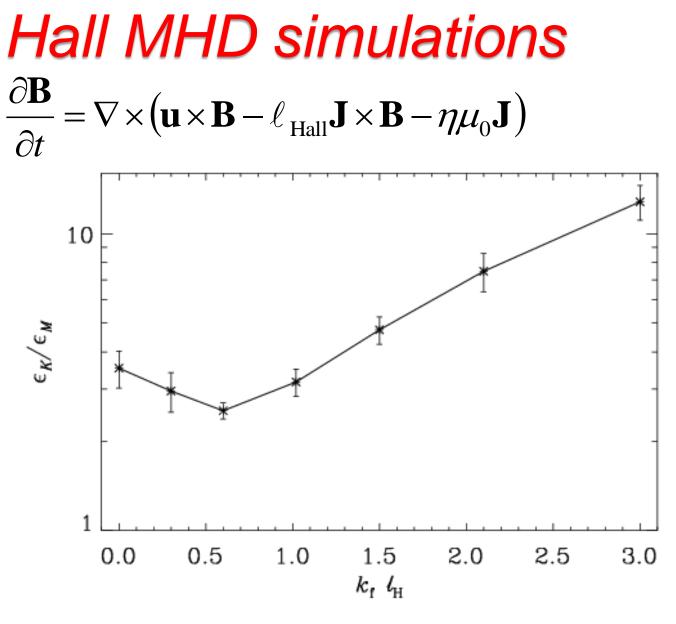
The key conclusion of this project is that the Hall effect is the critical factor which must be included to model collisionless magnetic reconnection. When the

Hall MHD

- How does it affect dissipation ratio?
- Does it "replace" ohmic diffusion somehow
- Does it affect the dynamo
 - Backscatter from magnetic to kinetic energy (Mininni, Alexakis, Pouquet 2006)
 - Nature of MHD Alfven waves changed

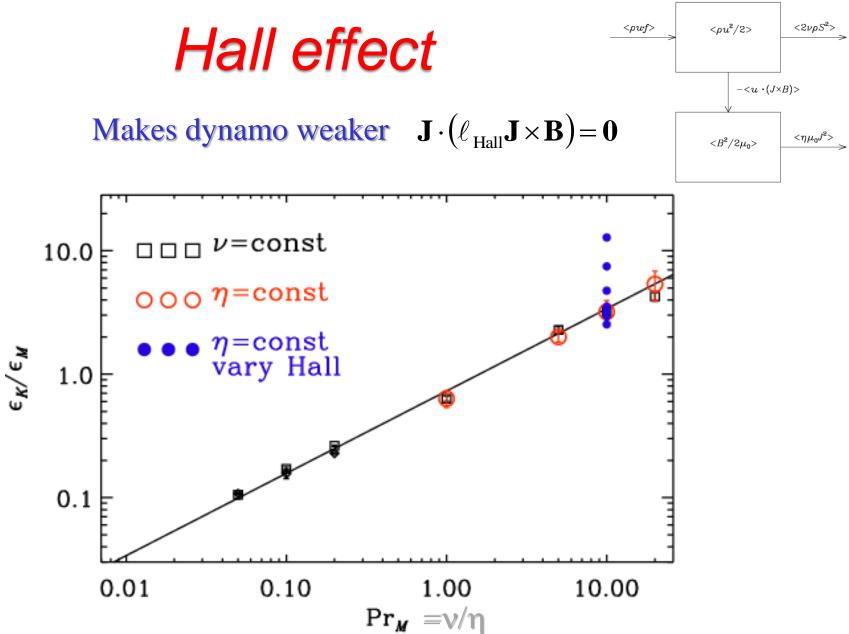


Makes dynamo weaker \rightarrow less magnetic dissipation 16



 $E_{\rm M}$ weaker, $\varepsilon_{\rm M}$ weaker, $\varepsilon_{\rm M}/\varepsilon_{\rm M}$ larger

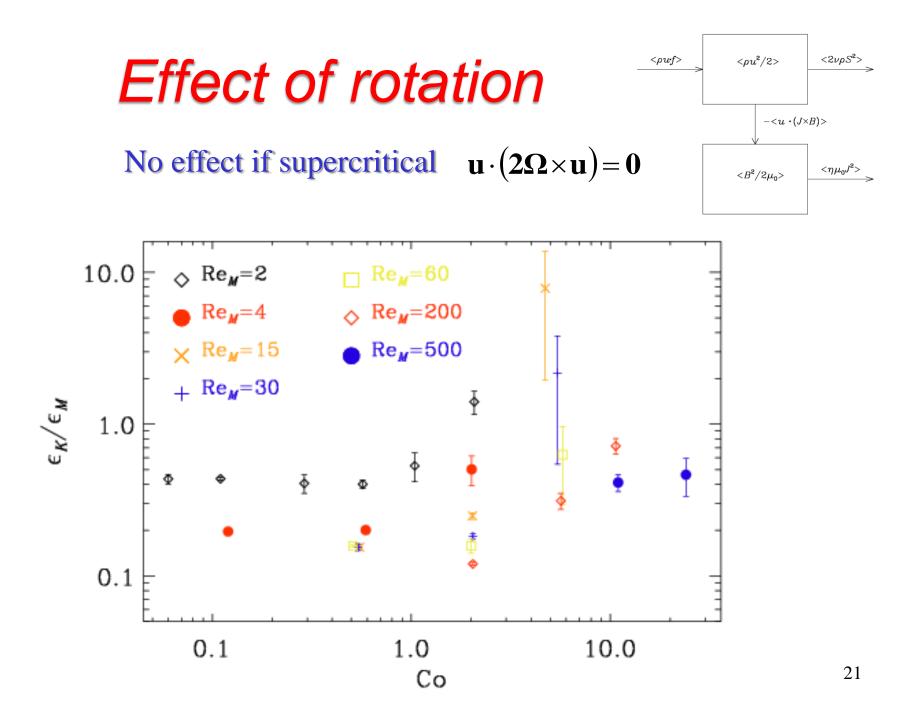
17



Conclusions

- Dissipation ratio scales with Pr_M
 - Both for $Pr_M > 1$ and < 1
 - SS dynamo scaling shallower (nonuniversal)
- Qualitatively reproduced with MHD shocks
- <u.(JxB)> determined by microphysics!?
 Hall does affect dynamo, if 1/l_{Hall} subinertial
 - Questions about LES or iLES

Run	vk_1/c_s	$\eta k_1/c_s$	Re	Re_M	Co	$u_{\rm rms}/c_{\rm s}$	$b_{\rm rms}/c_{\rm s}$	ϵ_K/ϵ_T	ϵ_M/ϵ_T	C_{ϵ}	k_{ν}/k_1	k_{η}/k_1	res.
RA1	1×10^{-3}	1×10^{-2}	30	3	0.1	0.090	0.066	0.30	0.70	1.71	17	4	16 ³
RA2	1×10^{-3}	1×10^{-2}	30	3	0.1	0.089	0.064	0.30	0.70	1.68	17	4	16 ³
RA3	1×10^{-3}	1×10^{-2}	29	3	0.3	0.088	0.065	0.29	0.71	1.66	17	4	16 ³
RA4	1×10^{-3}	1×10^{-2}	29	3	0.6	0.088	0.065	0.29	0.71	1.63	17	4	16 ³
RA5	1×10^{-3}	1×10^{-2}	32	3	1.0	0.096	0.063	0.35	0.65	1.31	18	4	16 ³
RA6	1×10^{-3}	1×10^{-2}	40	4	2.1	0.121	0.053	0.58	0.42	0.77	21	3	16 ³
RB1	$5 imes 10^{-4}$	5×10^{-3}	56	6	0.1	0.084	0.092	0.16	0.84	2.10	25	7	32 ³
RB2	5×10^{-4}	5×10^{-3}	57	6	0.6	0.085	0.094	0.17	0.83	2.03	25	7	32^{3}
RB3	5×10^{-4}	5×10^{-3}	83	8	2.0	0.124	0.073	0.34	0.67	0.62	30	6	32^{3}
RC1	2×10^{-4}	2×10^{-3}	150	15	0.6	0.090	0.117	0.13	0.87	1.74	48	14	64 ³
RC2	2×10^{-4}	2×10^{-3}	205	21	2.0	0.123	0.100	0.20	0.80	0.66	52	13	64 ³
RC3	2×10^{-4}	2×10^{-3}	353	35	4.7	0.212	0.019	0.89	0.11	0.07	65	7	64 ³
RD1	1×10^{-4}	1×10^{-3}	310	31	0.5	0.093	0.119	0.13	0.87	1.56	80	23	128 ³
RD2	1×10^{-4}	1×10^{-3}	410	41	2.0	0.123	0.127	0.15	0.85	0.69	83	23	128^{3}
RD3	1×10^{-4}	1×10^{-3}	613	61	5.4	0.184	0.037	0.69	0.31	0.12	105	16	128^{3}
RE1	5×10^{-5}	$5 imes 10^{-4}$	647	65	0.5	0.097	0.123	0.14	0.86	1.44	137	39	256 ³
RE2	5×10^{-5}	5×10^{-4}	833	83	2.0	0.125	0.134	0.14	0.86	0.69	138	39	256^{3}
RE3	5×10^{-5}	$5 imes 10^{-4}$	1160	116	5.8	0.174	0.099	0.39	0.61	0.17	160	32	256 ³
RF1	2×10^{-5}	2×10^{-4}	2033	203	2.0	0.122	0.116	0.11	0.89	0.59	243	74	256 ³
RF2	2×10^{-5}	2×10^{-4}	2950	295	5.6	0.177	0.106	0.24	0.76	0.14	272	65	256^{3}
RF3	2×10^{-5}	2×10^{-4}	3917	392	10.6	0.235	0.084	0.42	0.58	0.06	318	62	256 ³
RG1	1×10^{-5}	1×10^{-4}	7600	760	10.9	0.228	0.091	0.29	0.71	0.07	501	111	512 ³
RG2	1×10^{-5}	1×10^{-4}	6933	693	24.0	0.208	0.089	0.32	0.68	0.09	496	107	512 ³



Passive scalar

Specifically, the equations considered by Ohkitani & Dowker (2010) are

$$\partial u/\partial t = -uu' + \tilde{\nu}u'',$$
 (22)

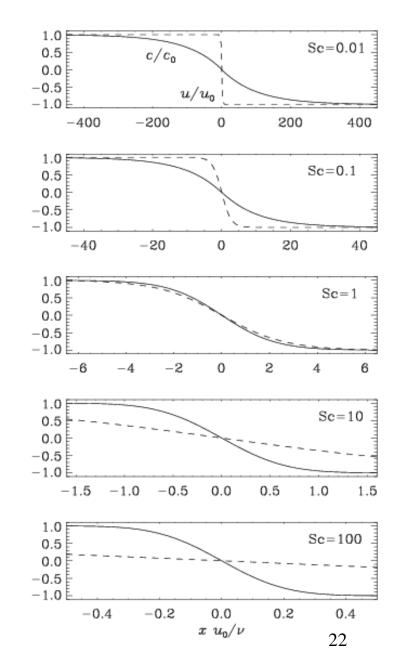
$$\partial c/\partial t = -uc' + \kappa c'', \tag{23}$$

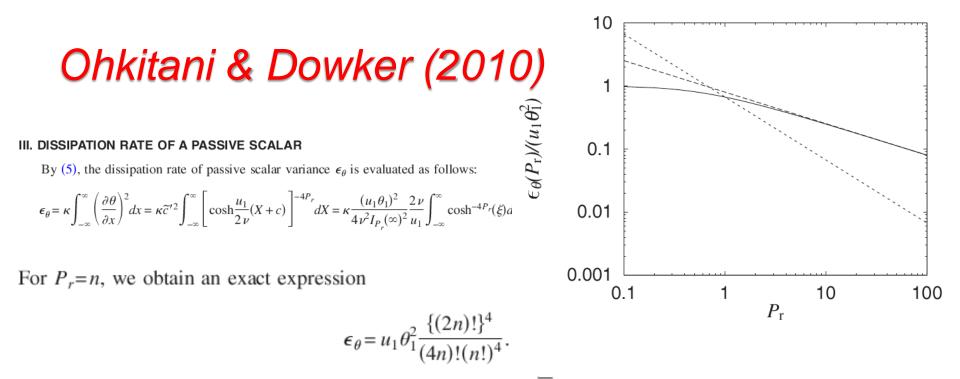
where primes denotes differentiation with respect to x. The solution to Equation (22) decouples and possesses a shock. In a frame of reference moving with the shock, the solution is stationary and given by

$$u(x) = -u_0 \tanh x/w,\tag{24}$$

where u_0 is the velocity jump and $w_u = 2\tilde{\nu}/u_0$ is the width of the shock with $\tilde{\nu} = 4\nu/3$ being a rescaled viscosity. These equations can be obtained from the hydrodynamic version (i.e., B = 0) of Equation (2) after setting $c_s = 0$, so the density gradient does not enter, so we can ignore Equation (1) and put $\rho = 1$. The 4/3 factor in the expression for $\tilde{\nu}$ comes from the fact that, owing to compressibility, the viscous acceleration term includes a $\frac{1}{3}\nabla\nabla \cdot u$ term in addition to the usual $\nu\nabla^2 u$ term; see Equation (5) for a corresponding reformulation of the dissipation terms. The viscous dissipation $\epsilon_K = \tilde{\nu} \int (u')^2 dx/L$ is then, using $\partial u/\partial x \propto 1/\cosh^2(x/w)$,

$$\epsilon_K = \tilde{\nu} \frac{w}{L} \int \frac{dx/w}{\cosh^4(x/w)} = \frac{4}{3} \frac{\tilde{\nu} u_0^2}{wL} = \frac{2}{3} \frac{u_0^3}{L}, \quad (25)$$





[For more general real-valued $P_r = \alpha$, we have $I_{\alpha}(\infty) = \sqrt{\pi}/2\Gamma(\alpha)/\Gamma(1/2+\alpha)$ and thus $\epsilon_{\theta} = u_1 \theta_1^2 2/\sqrt{\pi}\Gamma(2\alpha)\Gamma(1/2+\alpha)^2/\alpha\Gamma(\alpha)^2\Gamma(1/2+2\alpha)$, where $\Gamma(\alpha)$ is the gamma function.] By Stirling's formula $n! \simeq \sqrt{2\pi n}n^n e^{-n}$ for $n \ge 1$, we deduce that

$$I_{n+1}(\infty) \simeq \frac{1}{2}\sqrt{\frac{\pi}{n}}.$$

Therefore, the dissipation rate of θ in the limit of large P_r is

$$\epsilon_{\theta} \simeq u_1 \theta_1^2 \sqrt{\frac{2}{\pi P_r}} \quad \text{as} \ P_r \to \infty,$$
(9)

which decays as $P_r^{-1/2}$ with P_r . Even in this simple one-dimensional (1D) model, the problem of 23 dissipation anomaly is subtle in that ϵ_{θ} does depend on P_r in a nontrivial fashion.

MHD model

$$\frac{\partial u}{\partial t} = -uu' - bb' + \tilde{\nu}u'',\\ \frac{\partial b}{\partial t} = -ub' - bu' + \eta b'',$$

$$\frac{\partial u}{\partial x} = (u^2 + b^2 - u_0^2)/2\tilde{\nu}, \\ \frac{\partial b}{\partial x} = ub/\eta.$$

