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Finite dissipation at vanishing viscosity 
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How is this modified by magnetic fields? 
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1 Traceless rate-of-strain tensor 

if   0 then w2  infty 
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• Smaller h, more J, same dissipation 

• Or: dynamo stronger, more dissipation 

• Or: less dissipation  



Couple to B-field 
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• <u.(JxB)> taps energy 

– Dynamo if negative 

– Self-excited if instability 

– Requires 3-D B-field 

• Isotropic turbulence 

– Small-scale dynamo (nonhelical) 

– Large-scale dynamo (helical) 
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Inverse cascade 
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Motivation 

of LES 

modeling 

Location of cutoff 

does not matter for 

inertial range 

Order of limits 

 0 

h 0 

unimportant  

Passive scalar case 

Sc=/k 

(Batchelor) 



Coupling to B-field 

• Magnetic dissipation depends on work term 

– Independent of microphysics? 

– Basic assumption of LES and iLES 

– e.g., hyperdiffusion (Galsgaard & Nordlund 1996) 

• Not confirmed by DNS 

– Ratio scales with n/h 

– Either n or h fixed 

– What if replace Spitzer by Hall? 
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2 solutions 
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Re const 

ReM const 

 smaller, w2 smaller, hJ2 larger 
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Numerically difficult? 

• Energy dissipation via Joule 

• Viscous dissipation weak 

• Can increase Re substantially! 
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PrM=/h 



Isothermal MHD 
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Forcing: 

helical or 

nonhelical 



PrM dependence of  dissipation ratio 

Brandenburg (2014, ApJ,  791, 12) SPP = Sahoo, Perlekar, Pandi (2011) 



Energy ratio nearly unchanged 
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Inertial range  compensated spectra 
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2-D MHD (Tran et al, JFM 2013) 

13 

1-D shocks 

2-D dec turb 

h smaller, 

/h larger, 

J2 finite, 

hJ2   0 

w2/ hJ2  

keeps incr. 

Brandenburg (2014, ApJ,  791, 12) 



Hall Birn 
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Hall MHD 

• How does it affect dissipation ratio? 

• Does it “replace” ohmic diffusion somehow 

• Does it affect the dynamo 

– Backscatter from magnetic to kinetic energy 

(Mininni, Alexakis, Pouquet 2006) 

– Nature of MHD Alfven waves changed 

 

15 



Hall MHD simulations 

16 Makes dynamo weaker    less magnetic dissipation 

 JBJBu
B

0Hall h





t

2883 

resol. 



Hall MHD simulations 

17 EM weaker, eM weaker, eM/eM larger 
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Hall effect 
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Makes dynamo weaker   0BJJ  Hall

=/h 



Conclusions 

• Dissipation ratio scales with PrM 

– Both for PrM > 1 and < 1 

– SS dynamo scaling shallower (nonuniversal) 

• Qualitatively reproduced with MHD shocks 

• <u.(JxB)> determined by microphysics!? 

– Hall does affect dynamo, if 1/lHall subinertial 

– Questions about LES or iLES 
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Table 
• Dissipation ratio scales with PrM 

– Both for PrM > 1 and < 1 

– SS dynamo scaling shallower (nonuniversal) 

• Qualitatively reproduced with MHD shocks 

• <u.(JxB)> determined by microphysics!? 

– Hall does affect dynamo, if 1/lHall subinertiak 

– Questions about LES or ILES 
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Effect of rotation 
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No effect if supercritical   0u2Ωu 



Passive scalar 
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Ohkitani & Dowker (2010) 



MHD model 
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