

Collisionless reconnection and its interscale coupling to plasma turbulence

Jörg Büchner

collaborators: Patricio Munoz, Fabien Widmer

Max-Planck-Institute for Solar System Research Göttingen, Germany and

Collaborative Research Center "Astrophysical Flow Instabilities and Turbulence" Göttingen University thanks also to: F. Jenko and D. Told (UCLA) N. Yokoi and M. Hoshino (University Tokyo)

Large scale consequences of magnetic reconnection for the dynamics of the Solar corona, but:

- the coronal plasma is collisionless while
- the plasma beta differs a lot, mostly < 1</p>
- -> Dissipation, balancing of electric fields et c.: kinetic processes in dependence on beta (PIC code results).
- -> SGS models might bridge the gap between the scales, e.g. a Reynolds averaged turbulence approach
- -> But: differences to the real kinetic turbulence, dependence on plasma beta (gyrokinetic and PIC code simulation results)

-> the solar coronal plasma is by all means collisionless

 β =16 π n k_BT / B^2 varies from << 1 (strong force free B-field), to, locally, β ~ 1 or even larger near magnetic Nulls (infinity) !

Usually: anomalous resistivity

Solar eruption simulation, e.g. by the MHD code GOEMHD3 [Skala & Büchner, 2015]

$$\frac{\partial(\rho \boldsymbol{u})}{\partial t} + \nabla \cdot \left[\rho \boldsymbol{u} \boldsymbol{u} + \frac{1}{2}(p + B^2)\boldsymbol{I} - \boldsymbol{B}\boldsymbol{B}\right] = -\nu\rho(\boldsymbol{u} - \boldsymbol{u}_0) + \chi \nabla^2 \rho \boldsymbol{u}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) - (\nabla \eta) \times \boldsymbol{j} + \eta \nabla^2 \boldsymbol{B}$$
$$\frac{\partial h}{\partial t} + \nabla \cdot h \boldsymbol{u} = \frac{(\gamma - 1)}{\gamma h^{\gamma - 1}} \eta \boldsymbol{j}^2 + \chi \nabla^2 h,$$

 $\gamma h^{\gamma-1}$

$$\eta = \eta_0 + \begin{cases} 0, & if|j| < j_{crit} \\ \eta_0(\frac{|j|}{j_{crit}} - 1)^2 & if|j| \ge j_{crit} \end{cases}$$
$$\eta = \eta_0 + \begin{cases} 0, & if|u_{ccv}| < u_{crit} \\ \eta_{eff}\left(\frac{|u_{ccv}|}{u_{crit}} - 1\right), & if|u_{ccv}| \ge u_{crit} \end{cases}$$

How to link this to the observed macro-scale phenomena?

Electron phase space holes -> They grow and finally balance electric fields beyond the quasi-linear weak turbulence level.

Later also ion density holes

In case of open boundary conditions after electron density holes are formed (left plot) also ion holes are formed (right plot).

Double layer and turbulence -> effective (macroscopic) resistivity

Inset: electrostatic potential around the double layer. The ion holes merge into the double layer while the electron motion becomes highly turbulent behind the layer [from Büchner & Elkina, 2006].

Definition:
$$E_{\parallel} = \eta_{an} j_{\parallel} = \eta_{an} ne \left(v_i - v_e \right)$$

$$\eta_{an} = \frac{E_{\parallel}}{j_{\parallel}} = \frac{1}{ne(v_i - v_e)} \left(-\frac{m_e}{ne} \frac{d(nv_e)}{dt} - \frac{1}{ne} \frac{dp_e}{dx_{\parallel}} + \frac{1}{ne} f_{eff} \right)$$
with
where
$$\eta_{an} = \frac{m_e}{ne^2} \nu_{an} = \left(\epsilon_0 \omega_{pe}^2\right)^{-1} \nu_{an}$$

$$\nu_{an} = -\nu_{in} - \nu_{pg} + \nu_{eff}$$

$$\nu_{in} = \frac{1}{n(v_i - v_e)} \frac{d(nv_e)}{dt} \qquad \nu_{pg} = \frac{1}{nm_e(v_i - v_e)} \frac{dp_e}{dx_{\parallel}} \qquad \nu_{eff} = \frac{f_{eff}}{ne(v_i - v_e)}$$

J. Büchner et al. Turbulence and kinetic processes in collisionless reconnection - Nordita, Stockholm, 13.8.2015

Linearily unstable modes $\gamma > 0$ (colors) in kpar vs. k For small β the most unstable waves are B-field aligned, in the solar coronae often $\beta \sim 0.1 - 1 - >$ oblique waves

Larger beta: 2D LH turbulence

Time-evolution of the parallel electric wavefield Ex(x,y). **First ion-acoustic** field-aligned modes are excited. After t ω_pe ~ 300 **oblique LH** modes take over [Büchner & Elkina, 2010]

J. Büchner et al. Turbulence and kinetic processes in collisionless reconnection - Nordita, Stockholm, 13.8.2015

Dissipation in collisionless CS

Ensemble averaging <fo> < E> ... -> slowly varying parts + fluctuations:

$$f_j = f_{0j} + \delta f_j \quad E_{\parallel} = \langle E_{\parallel} \rangle + \delta E_{\parallel} \quad \langle \delta f_j \rangle = \langle \delta \vec{E} \rangle = \langle \delta \vec{E} \rangle = 0.$$

- -> Modified Vlasov equation for the
 - slowly varying quantities

with a non-linear term in the r.h.s.:

$$\frac{\partial f_{0e}}{\partial t} + \vec{v} \cdot \frac{\partial f_{0e}}{\partial \vec{r}} + \frac{e}{m_e} \vec{E} \cdot \frac{\partial f_{0e}}{\partial \vec{v}} = -\frac{e}{m_e} \left\langle \left(\delta \vec{E} + \vec{v} \times \delta \vec{B}\right) \cdot \frac{\partial \delta f_e}{\partial \vec{v}} \right\rangle$$

r.h.s.: correlation of fluctuations of e/m fields, plasma and current densities

$$\left(\frac{d}{dt}nm_e v_{y,e}\right)_{eff} = \langle \delta E_y \delta \rho_e + \delta j_{z,e} \delta B_x - \delta j_{x,e} \delta B_z \rangle$$

These non-linear terms can be calculated quasi-linearily for small amplitudes but, in general, only by kinetic simulations

2D Current sheet "collision rates"

Tested for the collisionless magnetospheric plasma where these rates exceed those of the 1D turbulence by a factor of about 6 [Silin, Büchner and Vaivads, 2005; Panov, Büchner et al., 2008]

Effective "collision rates": Solid (electric) $\delta \rho \delta E_u$ and dashed (magnetic fluctuations) $\delta j \times \delta B$ lines; (Upper - thicker lines: electrons; Lower - thinner lines: ions

Result for solar conditions

- Magnetic diffusivity expressed via an effective "collision frequency":
- **Neglible: binary particle collision** [Spitzer 56, Härm–Braginski 63]
 - There is no indication for the estimate of [Bunemann 1958] in the solar corona

- **PIC and Vlasov code simulations revealed for the solar corona:** [Büchner, Kuska, Panov, Silin, Elkina, 2005-08]
 - → 1D small beta: IA / double layers
 → 2D higher beta LH turbulence

 $\nu_c \approx \omega_{pi}/2\pi$

- But: what about larger beta cases (Nulls?)
- J. Büchner et al. Turbulence and kinetic processes in collisionless reconnection Nordita, Stockholm, 13.8.2015

Larger beta-> 3D instabilities

3D PIC-code simulation result: A sausage mode instability causes 3D small scale reconnection with Nulls [Büchner&Kuska, 1999]

Model: Reynolds-averaged SGS terms for MHD turbulence **Reynolds** averaging $\mathbf{E}_{\mathrm{M}} = -\beta \mathbf{J} + \gamma \mathbf{\Omega} + \alpha \mathbf{B}$

$$\beta = \frac{5}{7}\nu_{\rm K} = C_{\beta}\tau K,$$

 $\gamma = \frac{5}{7}\nu_{\rm M} = C_{\gamma}\tau W,$

 $\alpha = C_{\alpha} \tau H.$

$$K (\equiv \langle \mathbf{u}'^2 + \mathbf{b}'^2 \rangle / 2)$$

the turbulent cross-helicity and $W (\equiv \langle \mathbf{u}' \cdot \mathbf{b}' \rangle)$

Mean field approach,

[Yokoi et al, 2010]

the turbulent residual helicity $H (\equiv \langle -\mathbf{u}' \cdot \boldsymbol{\omega}' + \mathbf{b}' \cdot \mathbf{j}' \rangle)$

For details: See the talk by N. Yokoi later today

Turbulence and kinetic processes in collisionless reconnection - Nordita, Stockholm, 13.8.2015 J. Büchner et al.

MHD: SGS-turbulence model in 2D

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho U) + \chi \nabla^2 \rho \\ \frac{\partial \rho U}{\partial t} &= -\nabla \cdot \left[\rho U \otimes U + \frac{1}{2} (\rho + B^2) I - B \otimes B \right] + \chi \nabla^2 (\rho U) \\ \frac{\partial B}{\partial t} &= \nabla \times (U \times B) - (\nabla (\eta + \beta)) \times J + (\eta + \beta) \nabla^2 B \\ &+ \nabla \times (\gamma \sqrt{\rho} \Omega) \\ \frac{\partial h}{\partial t} &= -\nabla \cdot (hU) + \frac{\gamma - 1}{\gamma h^{\gamma - 1}} (\eta J^2 - \frac{\rho K}{\tau_t}) + \chi \nabla^2 h \\ \frac{\partial K}{\partial t} &= -U \cdot \nabla K + C_\beta \tau_t K \frac{J^2}{\rho} - C_\gamma \tau_t W \frac{\Omega \cdot J}{\sqrt{\rho}} + \frac{B}{\rho} \cdot \nabla W - \frac{K}{\tau_t} \\ \frac{\partial W}{\partial t} &= -U \cdot \nabla W + C_\beta \tau_t K \frac{\Omega \cdot J}{\sqrt{\rho}} - C_\gamma \tau_t W \Omega^2 + \frac{B}{\sqrt{\rho}} \cdot \nabla K - C_W \frac{W}{\tau_t} \end{aligned}$$

SGS turbulence as modeled for Harris-current-sheet reconnection

Enhanced energy of the turbulence (b) near the Xpoint increases the reconnection rate, the more the smaller the backgrund resistivity. For more details see the talk by F.

Widmer tomorrow.

SGS turbulence enhances reconnection but: minimum influence of guide fields

Higashimori et al, 2013 for Bg=0: the reconnection rate is enhanced by SGS-modeled turbulence.

But not much influence of the guide field! For more details see the talk by F.

Widmer tomorrow.

Gyrokinetics to bridge scales

We used the gyrokinetic code GENE"Gyrokinetic Electromagnetic Numerical Experiment" [Jenko et al. 2000]

Reconnection rates d ψ /dt for different guide field strength (1-50) by PIC-simulations (ACRONYM code) and GK (black line) a) β i = 0.01 b) β i = 1.0 from [Munoz et al., 2015]

But: not well described by GK: the turbulence at the reconnection site

bg=50

40

60

0.0053

Turbulence and kinetic processes in collisionless reconnection - Nordita, Stockholm, 13.8.2015 J. Büchner et al.

For large scale evolution: gyrokinetics

Left: reconnection rates $d\psi/dt$ for different guide field strengths (1-50) by PIC and GK (black line) simulations ($\beta i = 0.01$) and right: turbulence energy distribution [Munoz et al., 2015]

Balancing the E-field in 2D reconnection – zero guide field case

Guide field kinetic reconnection -> "anomalous" balance of the E-field

Turbulence causes anomalous "collisions" in the reconnection region [Munoz et al., 2015]

PIC: micro-turbulent energy K(t)

For v = the bulk velocity and

To compare with Reynolds decomposition results the turbulent crosshelicity

The same with zoom around the center of the left CS

PIC: turbulent cross-helicity W(t)

The same with zoom around the center of the left CS

For v = bulkvelocity and

40

7.06e-07

60

To compare with Reynolds decomposition results the turbulent crosshelicity

 $W = \langle \vec{V}' \cdot \vec{b}' \rangle$

is calculated

- In the Solar corona collisionless magnetic reconnection takes place but at very different plasma beta conditions, with scales to bridge of many orders of magnitude.
- For very small plasma beta -> 1 D turbulence due to concentrated field aligned currents -> ion acoustic type turbulence -> double layers -> phase space holes -> anomalous resistivity
- For moderately small beta-> 2 D effects become important, LH turbulence -> resistivity enhanced
- Order unity plasma beta or larger near magnetic nulls –> 3 D effects become important
- SGS models may help but have to include kinetic effects.

The Solar Orbiter Mission

