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Abstract
Magnetic reconnection is apparent in many astrophysical environments, on very different energy and length scales. It is suggested as one of the potential mechanisms behind
particle acceleration up to highly nonthermal energies in the solar corona or in more exotic environments like relativistic flows around black holes and neutron stars. We
present a numerical study where we use a combination of resistive magnetohydrodynamics (MHD) and test-particle methods to analyze particle acceleration up to relativistic
speeds in two repelling, unstable, current channels. The tilt-kink instabilities occurring are proposed as a novel reconnection initiation mechanism. The effects on particle
acceleration in the violent, reconnection-dominated evolution are discussed.

MHD equilibrium and stability
Two flux ropes are modeled by prescribing an ideal MHD equilibrium in Cartesian
coordinates on a square region in the (x, y)-plane, with two anti-parallel current
channels, initially in the z-direction (see Figure 1).

Figure 1: Equilibrium magnetic field magnitude of two repelling flux ropes in
3D (left) and in the (x, y)-plane, for , Bz(t = 0) = 0.1 (in dimensionless units).

An ideal MHD equilibrium can be established in two ways [1]:

• In a force free equilibrium (uniform plasma pressure), with a spatially varying,
vertical force-free magnetic field Bz(x, y) balancing the Lorentz force.
• By a pressure gradient balancing the Lorentz force ∇p = J×B.

2D stability:

• A linear stability analysis for 2D incompressible MHD, based on an energy prin-
ciple, has been carried out [1], showing that a perturbed ideal MHD equilibrium
is sensitive to a tilt instability in the (x, y)-plane.
• This leads to the creation of (near) singular current sheets in which particles can

accelerate efficiently.

It is shown by [2] that additional effects come into play in a 3D setup:

• The current channels may be unstable to an ideal kink instability, depending on
typical magnetic field strengths and system size, due to field line bending with
respect to the vertical direction.
• If the z-component of the magnetic field is strong enough, the magnetic tension

may also stabilize or delay kink deformations and even prevent tilt development.

Reconnection and particle dynamics
• The tilt instability is an ideal MHD instability, from which it can be concluded that

the resistivity has little effect on the (linear) onset phase of the instability [1]. Once
the instability develops and the physics becomes naturally nonlinear, it allows for
fast reconnection of the field lines.
• Excess magnetic field energy due to reconnection of field lines can efficiently ac-

celerate charged particles in the plasma up to non-thermal, relativistic velocities.
• To resolve particle dynamics in phase space we apply a relativistic guiding cen-

ter approximation to first order. Test particle dynamics are considered in slowly
varying fields, governed by the equations of motion for the guiding center [3]:
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• Relativistic effects modify classical drifts, because m→ m0γ, and constant mag-
netic moment µ→ µr

• There is a purely relativistic, drift in the direction of E⊥, of the order of v2/c2

• For typical solar corona conditions (see Table 1), the guiding center approxima-
tion is accurate because the gyroradius Rc� cell size

(
O
(
106m

))
[4].

Table 1: Typical values for plasma parameters in the solar corona
particle B [T ] T [K] n [ 1m3] vth [m/s] β [−] Rc [m] γ [−]
electron 0.03 106 1016 5.5 · 107 4 · 10−4 10−3 1.0002
proton 0.03 106 1016 1.3 · 106 4 · 10−4 4.4 · 10−21.0000

Numerical results in 2.5D and 3D
• Simulations are done with the block adaptive MPI-AMRVAC code [5].
• The resistive, compressible MHD equations are solved in 2.5D (Figure 2) and 3D

(Figure 3), in combination with the guiding center equations at every timestep.
• 100.000 test particles (electrons and protons) are initialized at random positions,

with a thermal velocity (see panel 1 of Figure 4).

t = 2 t = 6 t = 7 t = 8 t = 9
Figure 2: MHD evolution of the magnetic field magnitude in the (x, y)-plane
of a force free equilibrium in 2.5D (top five figures) and a pressure gradient
equilibrium (bottom five figures), with initial vertical magnetic field Bz = 0.1.

t = 5 t = 6 t = 8 t = 9
Figure 3: 3D MHD evolution of the magnetic field magnitude of a force free
equilibrium (top four figures) and a pressure gradient equilibrium (bottom

four figures), both with initial vertical magnetic field Bz = 0.1.
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Figure 4: Particle positions in a 2.5D pressure gradient equilibrium

evolution, colored by parallel velocity (in cgs units).

Conclusions
• In 2.5D the tilt instability develops faster for a force free equilibrium, but both

equilibra show a similar evolution from t = 6 onwards.
• in 2.5D there is a clear exponential growth of the peak current in the reconnection

regions, which indicates efficient particle acceleration.
• Secondary islands (reconnection) are only visible in 2.5D due to high resolution.
• in 3D simulations, the force free equilibrium yields a much slower evolution, pos-

sibly due to stabilization via the kink in the vertical direction. The kink enhances
the instability in the pressure gradient equilibrium for Bz(t = 0) = 0.1

• Electrons accelerate much faster and nearly reach the speed of light in and near
the current channels compared to protons.
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