Wave Activities and Their Roles in Collisionless Magnetic Reconnection

Keizo Fujimoto

Division of Theoretical Astronomy, NAOJ

Reconnection Workshop@Stockholm, Sweden

Waves in MRX Region: Obs. of Whistlers

Whistler waves in magnetopause [Tang et al., GRL, 2013]

Whistler waves in magnetotail [Wei et al., JGR, 2007]

Controlling reconnection?

Waves in MRX Region: Obs. near X-line

Purpose of This Study

It has been difficult only from observations to identify the generation mechanisms of the waves and their roles in reconnection.

The purpose of this study is:

 To understand the wave generation mechanisms in the reconnection region by means of the PIC simulations and linear wave analyses, and

• To clarify the roles of the waves in reconnection.

Simulation Model [Fujimoto, JCP, 2011] AMR-PIC (Adaptive Mesh Refinement – Particle-in-Cell)

Strategy of Our PIC Simulation

Waves in PSBL

For anti-parallel reconnection [Fujimoto & Machida, JGR, 2006] Langmuir waves + Electron heating at PSBL

Waves in Pile-up Region

[Fujimoto & Sydora, GRL, 2008]

Whistler waves in the pile-up region of B-field

Temperature anisotropy $(T_{e\perp}/T_{e\parallel} > 1)$ generates whistlers. Electrons are scattered to the parallel direction.

Waves Around Separatrices

[Fujimoto, GRL, 2014]

10

- Local strong acceleration of electron
- Intense wave activities
- Electron heating

Reconnectio

Wave Generation Mechanisms

Linear analyses $\omega = \omega \downarrow r + i\gamma$

0

Е

Beam-driven whistler instability

Electron-electron 2-stream instability

Role of the Waves in Separatrices

Waves in Separatrices with B_=0.3

[Chen, Fujimoto et al., JGR, 2015]

Guide field $B_q=0.3$

E||

Ion-frame Ey

Electron 2-stream + Buneman

Beam-driven Whistlers

Waves near X-line

Surface: |J|, Line: Field line Color on the surface: Ey, Cut plane: Jy

 $m_i/m_e = 100 \sim 10^{11}$ particles

[Fujimoto & Sydora, PRL, 2012]

- Plasmoid induces turbulence.
- A current sheet shear mode is responsible for the anomalous momentum transport.

 $L_{x} \times L_{y} \times L_{z} = 81\lambda_{i} \times 10\lambda_{i} \times 81\lambda_{i}$

Maximum resolution: Nx×Ny×Nz = 4096×512×4096

Wave Properties near X-line

Waves near X-line (Larger System)

Maximum resolution: Nx×Ny×Nz = 4096×2048×4096 ~ 5×10¹⁰

Waves near X-line (Larger System)

Wave spectrum along the current sheet

3D flux ropes & 3D outflow jets

A. Current sheet shear mode [Fujimoto & Sydora, PRL, 2012]

B. An electron shear mode (responsible for the 3D flux ropes)

Waves near X-line (Summary)

Localized current layer

Current sheet shear mode

- Perturbation in the inflow direction
- Anomalous resistivity
- $\lambda \sim 2\pi \sqrt{\lambda \downarrow i \lambda \downarrow e} \propto (m \downarrow i / m \downarrow e)$

Electron shear mode

- Perturbation in the outflow direction
- 3D flux ropes

• $\lambda \sim 20 \pi \sqrt{\lambda} i \lambda e$ ~a few Re $(\lambda i = c/\omega pi, \lambda e$

Reconnection Workshop@Stockholm, Sweden $C/\omega \downarrow pe$) ¹⁹

PSBL: Langmuire & ESWs due to electron 2-stream. Flat-top electrons are formed.

Pile-up region: Whistlers due to temp anisotropy.

Separatrix: Langmuire & ESWs by electron 2-stream, LH & ESWs waves by Buneman, and beam-driven Whistlers. Flat-top and non-thermal electrons are formed.

Electron current layer: Two kinds of shear modes. Anomalous resistivity and 3D flux ropes are generated.