

Observations of cold ion heating in the exhaust region at the Earth's subsolar magnetopause

Stockholm, 10-14 August 2015

S. Toledo-Redondo, A. Vaivads, M. André, and Y. V. Khotyaintsev

Swedish Institute of Space Physics, Uppsala, Sweden

Magnetic reconnection at the subsolar Magnetopause

In-situ measurements from CLUSTER

Outline

PART I: Cold ions in Magnetic reconnection: current reduction.

- Three-fluid description.
- Cold ion detection.
- Cold ion reduction of currents in thin boundaries.

PART II: Heating of cold ions in Magnetic reconnection

- Overview and detail of two magnetopause crossings.
- Parallel and perpendicular ion velocities.
- Cold ion heating by spatial E gradients.
- Cold ion heating by resonant wave activity.

PART I

Or

"Cold ion effect on reconnection"

Three-fluid description

Consider plasma composed of electrons, hot ions and cold ions.

$$\vec{J} = e(n_h \vec{v}_h + n_c \vec{v}_c - n \vec{v}_e)$$

From e⁻ momentum equation, neglecting *dt* and inertial term:

$$\vec{E} = -\frac{n_h}{n}\vec{v}_h \times \vec{B} - \frac{n_c}{n}\vec{v}_c \times \vec{B} + \frac{1}{ne}\vec{J} \times \vec{B} - \frac{1}{ne}\nabla \vec{P}_e$$

At scales $L>r_h$ it reduces to the frozen-in condition. **At scales r_c < L < r_h, only cold ions and e⁻ remain magnetized**. At scales $L < r_c$ the typical Hall physics dominate.

"Cold ions introduce a new length-scale where they remain frozen-in, modifying the Hall effect."

Hall electric field and cold ions

"Cold ions can ExB drift in the narrow region of enhanced Hall electric field in the separatrix region."

Cold ion detection

Estimation of the Ohm's law terms

 $\mathbf{E} = -\mathbf{v}_{c} \times \mathbf{B} - \mathbf{v}_{h} \times \mathbf{B} + \mathbf{j} \times \mathbf{B}/ne - \Delta p_{e}/ne$

Assume **1D magnetopause** (2SC). Estimation only of **normal components.**

 E_n measured by EFW.

jxB/en: B from FGM, j from c3-c4 + 1D MP.

 $v_i \times B$: B from FGM, v_c , v_h from partial CIS moments (4s resolution).

 $grad(p_e)/en$: p_e from CIS 4s moments, assume constant V_{mp} .

Hall E field balance without cold ions

Hall E field balance with cold ions

promoviji

PART II

Or

"Reconnection effect on cold ions"

Overview of the crossings

- Magnetopause crossings near the subsolar point.
- Presence of magnetospheric cold ions (dominant).
- Ion jets consistent with reconnection.
- Cold electrons?

log dEF

log dEF

Detail of cold ion heating

08-Apr-2008

Direction of ions

Heating of cold ions

In case A, ions are heated ~30 eV, in case B ~360 eV.

We identify 2 possible mechanisms for cold ion heating:

- Spatial gradients of E field (red lines).
- Resonant wave activity (blue and green).

Heating by spatial E field gradients

Condition for heating: $\nabla E > qB^2 / m_i$ [Cole, 1976]

	Grad(E)[V/km]	qB^2/m [V/km]
1	0.116	0.240
2	0.055	0.240
3	0.166	0.240

	Grad(E)[V/km]	qB^2/m [V/km]
1	0.160	0.345
2	0.310	0.345
3	0.100	0.345

Condition is not satisfied for the large scale E gradients.

Heating by resonant wave activity C1 2007 03 05 18:53:22 (+11s) C3 2008 04 08 11:57:08 (+9s) 10⁰ 10 ⁵SD (mV² m⁻2 Hz⁻1) PSD (mV² m⁻2 Hz⁻1) 10-1 10-1 gyrof. gyrof 10⁻² 10⁻² 10^{-3} 10-3 10 10-1 101 10² 10 10-1 102 10^{1} Frequency (Hz) Frequency (Hz)

Heating ratio by resonant wave:

$$\frac{dw}{dt} = S_L \frac{q^2}{m_i} \quad \text{[Chang, 1986]}$$

Considering 50% of the power transferred, the cold ions need 17s of interaction to be consistently heated in case B. The same time would provide a heat of ~10eV to case A ions.

Heating by resonant wave activity

Distance to X-line

Conclusion

- A new length-scale (r_c<L<r_h) is introduced into reconnection by cold ions, where only i_c and e⁻ remain frozen-in.
- The perpendicular currents in the thin layer of strong E_n are reduced by the presence of cold ions. Changes in the current must change B topology.
- Effective heating of cold ions near the X-line is consistent with resonant wave heating.
- What comes next:
 - Run simulations including cold ions (collaboration with other teams).
 - MMS measurements with cold ions (equatorial orbit).
 - Link the 2 parts of this talk.

Thank you for your attention

Ion distributions

Estimation of terms in the **Ohm's law**. v_ixB term must be accounted for in order to balance the equation.

$\mathbf{E} = -\mathbf{v}_{i} \times \mathbf{B} + \mathbf{j} \times \mathbf{B}/ne - \Delta p_{e}/ne$

v_cxB supports part of the Hall E field

Hall physics in the diffusion region

Mozer+, PRL, [2002]

Pritchett+, JGR, [2009]