Beaming of particles and synchrotron radiation in relativistic magnetic reconnection at high magnetizations

Daniel Kagan Nordita Workshop: Magnetic reconnection in Plasmas August 14, 2015

> Tel Aviv University Hebrew University of Jerusalem Collaborators: Ehud Nakar, Tsvi Piran

Relativistic reconnection

• Relativistic magnetic reconnection magnetic field energy is significantly larger than the total particle enthalpy $$\mathbf{R}^2$$

$$\sigma = \frac{B^2}{8\pi(\rho + P)c^2} \gg 1$$

- Many possible applications in astrophysics
 - Gamma ray bursts (if magnetically dominated) (Narayan & Kumar 2009)
 - Active galactic nucleus jets (same) (Giannios et al 2008, Narayan & Piran 2012)
 - Accretion disks (discussed by Prof. Hoshino)
 - Pulsar Wind Nebulae (Crab flare) (Uzdensky et al 2011, Cerutti et al 2012, 2013, 2014)

Only observational constraint is observed radiation

Fast Variability in these sources

(Buehler et al 2012)

Variability is present on timescales of ~2 hours!

Relativistic Beaming

- Radiation emitted by ultrarelativistic particles is beamed in a cone with an an opening angle 1/ γ
 - Measured intensity is enhanced if the observer is located inside the common cone of many particles
- Beamed radiation can be highly variable
 - Each pulse is one reconnection event that moves across our line of sight

Acceleration in reconnection is directional, so it may produce beamed particles and radiation

Cooling regimes and their effect on beaming

- Fast cooling particles radiate as soon as they leave the acceleration region
- Slow cooling particles radiate after reconnection is complete
- Intermediate cooling/fractal reconnection (e.g. Shibata and Tanuma 2001)
 - Our target
- Previous work by Cerutti et al. (2012, 2013, 2014) calculates beaming for fast cooling case (including radiation reaction)
 - Particles beamed within 2-4% of total solid angle
- What about the slow and intermediate cases?

The effects of high σ on reconnection

- For low σ~10, v_{in}/c~0.05-0.2 (e.g. Sironi & Spitkovsky 2014, Guo et al 2014, Liu et al 2015)
 - Similar to nonrelativistic reconnection
- Recent simulations by Bessho and Bhattacharjee (2012) find reconnection rates of \sim 1 for high σ
 - Also, big differences in current sheet structures >>>>

More recent calculations (Liu et al 2015) confirm that local reconnection rates increase with σ

High σ

2D PIC simulations

- Use Tristan-MP particle-in-cell code (Spitkovsky 2008) with current density filtering algorithm that reduces particle noise
 - Use 16 particles per cell (similar results for up to 50 particles per cell)
 - Skin depth is set to $\lambda_p = 8\Delta$ (similar results for up to 20Δ)
- Simulation setup:
 - Pair plasma
 - Use Harris current sheet with sheet width $\delta = 3 \lambda_p$
 - 2D simulations with $L_x \times L_y = 800 \lambda_p \times 640 \lambda_p$ (6400 $\Delta \times 5120 \Delta$)
 - Periodic boundary conditions
 - Set background magnetizations of $\sigma = 4$, 40, and 400

- X-points and outskirts of islands contain the highest-energy particles – consistent with results of Prof. Hoshino!
 - Fast inflows and thick current sheets found for $\sigma = 40, 400$
- Does this mean that energy transfer depends drastically on σ ?

Global definition of reconnection rate

 For relativistic reconnection, maximum possible kinetic energy gain is

 $\frac{d\mathcal{E}_{\mathrm{K,max}}}{dt} = 4cL_y\frac{B_0^2}{8\pi}$ • So we can define the reconnection rate as $\frac{d\mathcal{E}_{\mathrm{K}}}{d\mathcal{E}_{\mathrm{K}}} = 1 \qquad L_x$

$$r_{\rm rec} = \frac{ac_{\rm K}}{d\tau} \frac{1}{4\mathcal{E}_{\rm B,0}} \qquad \tau = \frac{L_x}{c} t$$

Definition is extremely easy to use for periodic boundary conditions, but difficult for observations

• r_{rec} =0.15, 0.20, and 0.17 for σ =4,40, and 400

No dependence on $\sigma!$

Measuring beaming

- Beaming of particles and radiation also doesn't depend significantly on σ
 - Remaining results are from the simulation with $\sigma = 40$
- We calculate beaming for particles in an X-point and an island in various energy bins
- /mc γ measures how focused the particles are towards the direction of bulk motion
- $\chi \gamma$ measures the spread (1 s.d.) of the particles relative to the minimum spread of radiation $(1/\gamma)$

X-point particles

- Particles at all values of *γ* in the X-line are locally highly beamed
- Direction of beaming changes linearly with distance from the center of the X-point

Distance from X-point center

Island particles

Distance from island center

Schematic motion of an electron

X

- Particle enters Xpoint, and is accelerated by electric field (most acceleration takes place here)
- Deflected towards the magnetic island by the reconnected field
- Then it is isotropized in the island

Synchrotron Radiation Calculations

• Calculate effective magnetic field from the curvature of particle trajectories (Wallin et al 2015)

$$B_{\rm eff} = \frac{mc\gamma}{q} \frac{\sqrt{p^2 F_L^2 - (\mathbf{p} \cdot \mathbf{F}_L)^2}}{p^2}$$

• Use synchrotron formula to calculate radiation

$$\frac{dF_{\omega}}{d\omega} = \frac{\sqrt{3}q^3 B_{\text{eff}}}{2\pi mc^2} F\left(\frac{\omega}{\omega_c}\right) \qquad \qquad \omega_c = \frac{3qB_{\text{eff}}\gamma^2}{2mc}$$

- Assume radiation from each particle is beamed within $1/\gamma$ to calculate directional distribution
- This is a calculation based on the current particle location (fractal reconnection regime)

Aitoff projections of radiation in all three cases

10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ Flux Fraction

 $100 < \omega / \omega_0 < 1000$

 $10000 < \omega/\omega_0 < 100000$

10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ Flux Fraction

 $1 < \omega / \omega_0 < 10$

 $10000 < \omega/\omega_0 < 100000$

X-point and box radiation is focused toward equator (ϑ=0) at high energies

Radiation from islands not beamed at all except at highest energies - particles entering from X-points

X-line Fast cooling Island Slow Cooling (Half) Box Fractal Reconnection

10⁻³ 10⁻² 10⁻¹ 10⁰

Flux Fraction

Quantitative Beaming of Particles and Radiation

Conclusion

- The global reconnection rate has no dependence on magnetization despite the increase in locally measured reconnection rates
- Particles in X-points are strongly beamed, but the direction of beaming changes with location
- Particles in islands are moderately beamed at the edges, unbeamed at the center
 - Particles entering the island from the X-points are beamed
- The high-energy radiation in all three regimes of cooling are beamed within ~0.5-2.5% of the sky
 - Consistent with previous results by Cerutti et al (2012,2013,2014)
 - But! Slow cooling may result in no beaming if hot outflows from X-points cease at late times

Connection with space physics

- Global and energy-based reconnection rate calculations needed for astrophysics
 - Local measurements of inflow velocities or electric fields may not accurately measure energy transfer
 - E-J measurement can probe energy transfer directly
 - Can global measurements be made for observations?
- The large-scale physics of reconnection affects whether it can explain high-energy, variable sources
 - Does fractal reconnection occur on large scales?
 - How intermittent is reconnection, and what is the "true" reconnection rate
 - If not, do outflows from reconnection regions contribute to beaming at late times?