Ion Temperature Anisotropies across Magnetotail Reconnection Jets

H. Hietala¹, J. F. Drake², T. D. Phan³, J. P. Eastwood¹ and J. P. McFadden³

¹Imperial College, London, UK ²Univ. of Maryland, US ³SSL, UC Berkeley, US

Acknowledgements:

The work of HH is funded by the UK Science and Technology Facilities Council (STFC). We acknowledge fruitful discussions within the international team lead by T. Phan at the International Space Science Institute (ISSI) in Bern.

The visit to Berkeley was made possible by the Marie Curie IRSES funded Turboplasmas project. The Alfred Kordelin foundation is also thanked for financial support.

NORDITA, 11 August 2015

mperial	College
ondon	

Magnetic reconnection

magnetic energy

particle energies

fast flows
heating
energetic particles

background: NASA/GSFC

Questions & Methods

temperature anisotropies?
 firehose instability?
 ion dynamics?

ARTEMIS dual-spacecraft observations large 2.5D PIC simulation

In situ observations: heating in different parameter regimes?

available magnetic energy per particle: $B_{in}^2/\mu_0 n_{in} = m_i V_{A,in}^2$ 10¹ - 10² eV 10² - 10⁴ eV 10⁴ - 10⁵ eV

mperial College

Anisotropy: firehose instability?

mperial College

Ion dynamics: Speiser motion?

Speiser, JGR (1965)

mperial College

ARTEMIS observations: anti-parallel, symmetric

mperial College

ARTEMIS observations: overview

mperial College

Where are we? \rightarrow Hall magnetic field

mperial College andan

Hall magnetic field profiles: comparison

 \rightarrow we're **more than 100** d_i downstream

Temperature profiles: good agreement

mperial College

Firehose condition: good agreement

 \rightarrow firehose *not fast enough* to limit anisotropy

mperial College andan

Ion dynamics: reconnection plane

mperial College andan

Ion dynamics: reconnection plane edge \rightarrow mid-plane

mperial College

Ion dynamics: reconnection plane edge \rightarrow mid-plane

mperial College

Ion dynamics: current sheet plane

orientation of the loop defines the orientation of the Speiser-like distribution

mperial College

Conclusions on anisotropy and dynamics

(1) varying anisotropies

(2) firehose unstable (3) Speiser-like

mperial College andan

Additional material

mperial College

Other events: T_{\parallel}/T_{\perp} profiles

mperial College

Hietala *et al.*, GRL (2015), under review. h.hietala@imperial.ac.uk 19 NORDITA, 11 August 2015