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Motivations

• what’s the long term evolution of collisionless magnetic reconnection? Petschek-like or 
multiple X-points? 

Observational evidence in both directions in the solar wind, e.g. [Gosling07] vs 
[Eriksson14] 

→ we see plasmoids first, then Petsheck-like exhaust

• if Petschek-like evolution, can we see in fully kinetic simulations the Switch Off Slow 
Shocks (SO-SS) that Petschek expected [Vasyliunas75]?

Long history of searching for SO-SS in kinetic simulations (intro in [Liu 12, Innocenti15])

• Petschek reconnection is a collisional concept. What’s the relation with collisionless (i.e. 
kinetic) reconnection? 

→ the multi scale problem



Large scale, long term evolution of a 2D3V collisionless magnetic 
reconnection simulation

upper layer: unperturbed, plasmoid chain* develops 
from 〜～ 180 Ωcit onwards

lower layer: GEM-like perturbation [Birn01], goes 
directly into non ideal regime of reconnection 

[Karimabadi05] 

* Loureiro07-12, Lapenta08, Daughton06, Drake06, Markidis13, Lin08

a moderate guide field, Bg=0.3 B0 (corresponds to 〜～
0.035 B0 for mr=1836, 0.35-1 nT for the tail), opposes 

the firehose instability [Karimabadi99, Lee13]  

→ different evolution than [Liu12]

Before proceeding: closer look at the X point

Medium-size plasmoids are emitted in the leftwards 
exhaust from 〜～ 90 Ωcit until a monster plasmoid 
[Uzdensky10, Loureiro12] forms at 〜～ 160 Ωcit

Simulation parameters

2D3V, Lx/di x Ly/di = 891.2 x 409.6
dx/di=dy/di= 0.1, dt= 0.01Ωci

mr=25, LH/di= 2, Ti/Te=1, vth,e/c= 0.16667
double periodic BC

simulation done with iPic3D [Markidis10]



Looking for an area of (in plane) magnetic field switch-off

At large distances [Higashimori12] from the X point/monster 
plasmoid, Bx 〜～BT1 (in plane tangential component) forms a 

plateau around 〜～0.
The plateau/ switch off area moves outwards embedded into the 

exhaust and covers growing % of it (see below for the 
rightwards exhaust)

Closer look at the switch-off area:

SS

SS

RD

RD

We identify two structures in correspondence with 
the SO areas, i.e. two back-to-back Slow Shock/ 

Rotational Discontinuity structures

[Liu12] observes two SSs and a rotational wave in 
2D3V PIC simulations, no switch off because of 

firehose instability

[Whang98,04] sees SS/RD in Wind (solar wind) and 
Geotail (magnetosphere) data 

is this structure already observed?



Identification of the external transitions as Slow Shocks/ 1

x/di= -143.1 x/di= -132.2

N

T1

N
T1

T2
of the Rankine-Hugoniot jump relations 

[Goedbloed04], we check preliminarily [BN]=0, [ET]=0 
for validation purposes; width of the discontinities: 

Δ/2= di,loc [Treumann09], di,loc/di=3.25

the traces in ET1 are electron holes 
[Drake03, Lapenta11, Divin12] in the 
lower separatrix (there, ET1 〜～ Epar)

we are looking for fluid structures, but the 
simulation is kinetic!



x/di= -143.1

now let’s check for density and pressure increase, reduction of BT1

BT1 is reduced, but not switched off: this is 
NOT a SO-SSx/di= -132.2

A measure of the (asymmetrical) ion heating while crossing the separatrices

just downstream the 
separatrices, two ion 

populations: 
separatrix current 

and ions just captured

Identification of the external transitions as Slow Shocks/ 2



x/di= -143.1 x/di= -132.2

The internal transitions are identified as Rotational 
Discontinuities (RDs) through the generalized Walén 

[Retinò05] test, since ions are not magnetised upstream and 
the plasma carries large currents [Scudder99, Le14]

Steps:

1. calculation of the fluid velocity U in the deHoffman-Teller frame [Khrabrov89]

U= v-VHT
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and D(V HT)/D(0) are related by the formula

c2 + D(V HT)

D(0)
= 1

which follows from equation 9.10.
If directly measured electric field data, E(m), are used in place of �v(m) ⇥ B(m) for

determination of V HT, the formula 9.10 is replaced by

V HT = K�1
0

D

E(m) ⇥ B(m)
E

(9.12)

Finally, for structures described by ideal Hall MHD, the generalised form of Ohm’s law
yields

1
nee

rpe + E + ve ⇥ B = 0 (9.13)

where pe is the electron pressure, ne is the number density of electrons, e is the magnitude
of the electron charge, and ve is the electron fluid velocity. It is seen from this expression
that �ve ⇥ B can now be used as a proxy, not for E itself, but for eE ⌘ (E + (rpe/nee)).
Thus, if accurate measurements of ve are available, the calculation of a frame velocity by
replacing v by ve in equation 9.10 or 9.14 becomes meaningful. It leads to a modified
HT frame in which heE02i is made as small as possible. Such minimisation reflects the
fact that in a simple two-fluid model, the magnetic field is frozen into the electron fluid,
rather than the ion fluid. For a one-dimensional discontinuity having hBi · n̂ 6= 0, the
intrinsic normal electric field mentioned in Section 9.2 comes exclusively from the rpe

term in equation 9.13. Therefore, an HT-frame determination based on ve will remove the
influence of the intrinsic electric field on the frame velocity. It will produce the velocity of
the “proper” frame of the discontinuity, mentioned in Section 9.2.

We mention the following link to Chapter 10. Suppose that one applies equation 9.10
to two (M = 2) E, B pairs measured on opposite sides of either a shock or a tangential
discontinuity with a known orientation. Then, equation 10.6 (page 252 of Chapter 10) can
be obtained by projecting the two sides of our equation 9.10 onto the discontinuity plane.

9.3.2 Minimisation of Residual Cross-Field Velocity
In principle, the best-fit approach to finding an approximation to V HT can employ any

merit function that is non-negative and whose value would be zero for a perfect HT frame.
For instance, one can minimise the mean square of the cross-field plasma velocity, rather
than the electric field, in the moving frame:

Q(V ) = 1
M

M
X
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(9.14)

The process of minimisingQwith respect to V differs from that forD in a straightforward
way: the factor multiplying the orthogonal projection operator in each matrix K(m) (see
equation 9.11) would be unity instead of |B(m)|2. In other words, K(m) and K0 are replaced
by P(m) and P0 ⌘ hP(m)i in equation 9.10. For the case at hand, the minimisation of Q

yields
V HT = (�120.9, �224.1, 72.9) km/s
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mately valid so that
E + v ⇥ B ⇠= 0 (9.7)

then the convective electric field, �v ⇥ B, calculated from measured values of the plasma
velocity, v, and magnetic field, B, can be used as a proxy for the electric field. This
approach can be taken whenE is not available or is not measured with sufficient accuracy.
To date, this has been the most common situation and it is therefore the one we will address
first, in Section 9.3.

9.3 Determination of V HT from Experimental Data

9.3.1 Minimisation of Residual Electric Field
To obtain an approximation toV HT from a set of experimental measurements of plasma

bulk velocity, v(m), and magnetic field, B(m), m = 1, 2 . . . M , one may seek a reference
frame in which the mean square of the electric field is as small as possible for the given
set ofM measurements. Denoting this quantity by D(V ), which is given by

D(V ) = 1
M
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(9.8)

the HT velocity is the value of the frame velocity, V , that minimises D. We will use the
symbol V HT to designate this approximate value. As a function of its vector argument,
the quantity D is a non-negative quadratic form which therefore must have a unique mini-
mum. The minimisation condition rV D = 0 leads, after straight-forward analysis, to the
following linear equation for V HT:

K0V HT =
D

K(m)v(m)
E

(9.9)

Assuming K0 to be non-singular (see Section 9.4.1), the solution is

V HT = K�1
0

D

K(m)v(m)
E

(9.10)

In these expressions, each K(m) is the matrix of projection, P(m), into a plane perpendicular
to B(m), multiplied by B(m)2:

K(m)
µ⌫ = B(m)2

 

�µ⌫ � B
(m)
µ B

(m)
⌫

B(m)2

!

⌘ B(m)2P (m)
µ⌫ (9.11)

The angle brackets h. . .i denote an average of an enclosed quantity over the set of M

measurements, and K0 ⌘ hK(m)i. The formula 9.10 gives V HT in terms of the measured
quantities, v(m), and B(m).

Now we apply the procedure to an experimental data set, namely the magnetopause
crossing by the AMPTE/IRM spacecraft on October 19, 1984, 05:18:53 UT. This event
was originally examined by Sonnerup et al. [1990] and is also discussed in detail in Chap-
ter 8, where Table 8.4 (page 218) lists the plasma and magnetic data for benchmarking
purposes. Here, we concentrate on the HT analysis. The mid-plane of the current layer

Identification of the internal transitions as Rotational 
Discontinuities (-like)

�U
T,obs

= U
T,D

�U
T,U

�UT,th = ± [(1� ↵U )4⇡⇢]
�1/2 · [BT,D(1� ↵D)�BT,U (1� ↵U )]

↵ ⌘
�
Pk � P?

�

(B2/4⇡)

2. calculation of ΔUT,obs vs ΔUT,th [Retinò05] keeping the plasma anisotropy into account (α factor [Paschmann98])

3.evaluation of results through R= |ΔUT,obs|/|ΔUT,th|, angle

m: ‘observations’ → 100 couple of points randomly generated up- (U) and down- (D) stream at distance 0.5<d/di<2 



x/di= -143.1 x/di= -132.2

Identification of the internal transitions as Rotational 
Discontinuities (-like)

RDs do not compress or heat the plasma: δρ and δP minimum 
with respect to SS values (but keep into account kinetic 

processes, e.g. formation of density cavities) 

transitions at x/di= -132.2 
give excellent results at the 
generalized  Walén (R=0.93, 
1.12, θ= 168, 0.7), less good 

results at x/di= -143.1

The internal 
Rotational 

Discontinuities switch-
off the in-plane 

tangential component 
of the magnetic field 

(BT1 〜～Bx)

What is the phase space for the particles species within the 
switch-off region?

electrons ions

— ΔUT,th

… ΔUT,obs 



Kinetic aspects of the SS/RD structures

1. measure of ion slippage [Goldman15]

�us,?,1 = vs,?,1 � E?,2/|B|

�us,?,2 = vs,?,2 + E?,1/|B|

Areas of interest for slippage: separatrices and 
dipolarization fronts and their upstream (expected); 

upstream the rotational discontinuities

2. kinetic particle distribution signatures
(see talks yesterday)

ion population: separatrix current, ions captured into 
the exhaust recently or closer to the X point

e?,1 ! B⇥ ez

e?,2 ! B⇥ e?,1



Conclusions and future work

• we examined the long term evolution of large domain 2D3V PIC simulations of 
collisionless magnetic reconnection seeded by a GEM-like perturbation

• we observed the emission of medium size plasmoids, which subsides with the formation of 
a monster plasmoid at the X point

• in the exhausts, compound Petschek-like Slow Shock/ Rotational Discontinuity structures 
switch off the in plane component of the tangential magnetic field 

• the SS/RD structures present kinetic aspects

• the investigation needs to be extended to more realistic geometries and set of parameters

• have the SS/RD structures been already observed [Whang98,04]?

Reference: Innocenti et al, Evidence of magnetic field switch-off in collisionless magnetic reconnection, ApJL, accepted
(uploaded on ResearchGate) 

Thank for you your attention

Check my poster on the Multi-Level Multi-Domain method, 
a semi-implicit adaptive method for PIC simulations 

(tested on reconnection & turbulence) 
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The Multi-Level Multi-Domain method: a fully kinetic semi-implicit 
adaptive method for PIC simulations

Multi-Level Multi-Domain simulations of Electron Diffusion Regions in magnetic reconnection
are as much as 70 times cheaper than their “traditional” PIC counterparts 

|Ve,x/VA,i|

14.2 14.6 15 15.4 15.8
0

5

10

15

20

25

30

35

40

45

y/di

|v
e,

x/v
A,

i|

x/di=15.2320, Ωcit=13.46

 

 
NS
TR2
TR4
TR6

Lx/di= Ly/di=20
mr=1836
RF=12

TR= 1 → 6
dxCG= 0.078 di

dxRF= 0.28 de

dtCG=0.05→0.3ωpi-1

Innocenti et al., 2013
Bect et al, 2014

Innocenti et al., 2015

calculation of the ion 
Alfven speed: 

identification of the 
Electron Diffusion 
Region with the J.E 

method 

electron jet velocity, 
normalized to the ion 

Alfven speed
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The entire domain is simulated with ion scale resolutions; higher (electron scale) resolution is used in selected, smaller 
regions, e.g. in the Electron Diffusion Region

very cheap 
realistic mass 

ratio 
simulations!!!

electron processes are present
in the CG, even if not full resolved

The MLMD 
system

An exercise: measurement of the velocity of the electron jets ejected at the X 
point,Ve,x/VA,i, with VA,i the ion Alfven speed


