Evidence of magnetic field switch-off in PIC simulations of collisionless magnetic reconnection with guide field

M.E. Innocenti¹, M. Goldman², D. Newman², S. Markidis³, G. Lapenta¹

I: Centre for Plasma Astrophysics, KULeuven, Belgium 2: University of Colorado, Boulder, USA 3: HPCViz Department, KTH Royal Institute of Technology, Stockholm, Sweden

Motivations

• what's the long term evolution of collisionless magnetic reconnection? Petschek-like or multiple X-points?

Observational evidence in both directions in the solar wind, e.g. [Gosling07] vs [Eriksson14]

 \rightarrow we see plasmoids first, then Petsheck-like exhaust

• if Petschek-like evolution, can we see in fully kinetic simulations the Switch Off Slow Shocks (SO-SS) that Petschek expected [Vasyliunas75]?

Long history of searching for SO-SS in kinetic simulations (intro in [Liu 12, Innocenti 15])

- Petschek reconnection is a collisional concept. What's the relation with collisionless (i.e. kinetic) reconnection?
 - \rightarrow the multi scale problem

Large scale, long term evolution of a 2D3V collisionless magnetic reconnection simulation

upper layer: unperturbed, plasmoid chain* develops from \sim 180 $\Omega_{ci} t$ onwards

lower layer: GEM-like perturbation [Birn01], goes directly into non ideal regime of reconnection [Karimabadi05]

$$J_{ze} ~~ rac{4\pi e d_i}{m_i \omega_{pi}}$$
, Time: 250 $\Omega_{ci} t$

a moderate guide field, Bg=0.3 B0 (corresponds to ~ 0.035 B0 for mr=1836, 0.35-1 nT for the tail), opposes the firehose instability [Karimabadi99, Lee13]

 \rightarrow different evolution than [Liu12]

Before proceeding: closer look at the X point

 $B_{z} \frac{e}{m_{i}\omega_{pi}}$, Time: 250 $\Omega_{ci}t$

Medium-size plasmoids are emitted in the leftwards exhaust from \sim 90 Ω_{ci} t until a monster plasmoid [Uzdensky10, Loureiro12] forms at \sim 160 Ω_{ci} t

* Loureiro07-12, Lapenta08, Daughton06, Drake06, Markidis13, Lin08

Looking for an area of (in plane) magnetic field switch-off

At large distances [Higashimori I2] from the X point/monster plasmoid, $B_x \sim B_{T1}$ (in plane tangential component) forms a plateau around ~ 0 .

The plateau/ switch off area moves outwards embedded into the exhaust and covers growing % of it (see below for the rightwards exhaust)

time $[\Omega_{ci}]$	length $[d_i]$	% of the exhaust	
180	12.5	11 %	
200	16.3	12.7~%	
220	26.3	17.6 %	
240	31.3	18.4 %	

Closer look at the switch-off area:

We identify two structures in correspondence with the SO areas, i.e. two back-to-back Slow Shock/ Rotational Discontinuity structures

[Liu I 2] observes two SSs and a rotational wave in 2D3V PIC simulations, no switch off because of firehose instability

[Whang98,04] sees SS/RD in Wind (solar wind) and Geotail (magnetosphere) data is this structure already observed?

Identification of the external transitions as Slow Shocks/ I

Identification of the external transitions as Slow Shocks/ 2

Identification of the internal transitions as Rotational Discontinuities (-like)

The internal transitions are identified as Rotational Discontinuities (RDs) through the generalized Walén [Retinò05] test, since ions are not magnetised upstream and the plasma carries large currents [Scudder99, Le14]

Steps:

I. calculation of the fluid velocity U in the deHoffman-Teller frame [Khrabrov89]

$$\mathbf{U} = \mathbf{v} - \mathbf{V}_{\text{HT}} \qquad V_{\text{HT}} = \mathbf{K}_{0}^{-1} \left\langle E^{(m)} \times B^{(m)} \right\rangle \qquad \qquad K_{\mu\nu}^{(m)} = B^{(m)^{2}} \left(\delta_{\mu\nu} - \frac{B_{\mu}^{(m)} B_{\nu}^{(m)}}{B^{(m)^{2}}} \right) \equiv B^{(m)^{2}} P_{\mu\nu}^{(m)}$$

m: 'observations' \rightarrow 100 couple of points randomly generated up- (U) and down- (D) stream at distance 0.5<d/di>

2. calculation of $\Delta U_{T,obs}$ vs $\Delta U_{T,th}$ [Retino05] keeping the plasma anisotropy into account (α factor [Paschmann98])

$$\Delta \mathbf{U}_{T,obs} = \mathbf{U}_{T,D} - \mathbf{U}_{T,U} \qquad \Delta \mathbf{U}_{T,th} = \pm \left[(1 - \alpha_U) 4\pi \rho \right]^{-1/2} \cdot \left[\mathbf{B}_{T,D} (1 - \alpha_D) - \mathbf{B}_{T,U} (1 - \alpha_U) \right]$$
$$(P_{\parallel} - P_{\perp})$$

$$\alpha \equiv \frac{\left(P_{\parallel} - P_{\perp}\right)}{\left(B^2/4\pi\right)}$$

3.evaluation of results through R= $|\Delta U_{T,obs}|/|\Delta U_{T,th}|$, angle

Identification of the internal transitions as Rotational

Discontinuities (-like)

	\mathbf{v}_{dHT}/c	N	T1
upper SS	(-0.0911, 0.0080, -0.0366)	(0.26903, 0.96313, 0)	(0.96313, -0.26903, 0)
lower SS	(-0.1177, -0.0129, 0.0407)	(0.26903, -0.96313, 0)	(-0.96313, -0.26903, 0)
upper RD	(-0.098, 0.0079, -0.0382)	(0.14915, 0.98881, 0)	(0.98881, -0.14915, 0)
lower RD	(-0.1118, -0.0103, 0.0498)	(0.24381, -0.96982, 0)	(-0.96982, -0.24381, 0)

RDs do not compress or heat the plasma: $\delta\rho$ and δP minimum with respect to SS values (but keep into account kinetic processes, e.g. formation of density cavities)

transitions at $x/d_i = -132.2$ give excellent results at the generalized Walén (R=0.93, $1.12, \theta = 168, 0.7$, less good results at $x/d_i = -143.1$

What is the phase space for the particles species within the switch-off region?

0.02

0

 $\Delta U_{T_1}/c$

 $-\Delta U_{T,th}$

 $\dots \Delta U_{T,obs}$

The internal Rotational Discontinuities switchoff the in-plane tangential component of the magnetic field $(B_{TI} \sim B_x)$

Kinetic aspects of the SS/RD structures

Conclusions and future work

- we examined the long term evolution of large domain 2D3V PIC simulations of collisionless magnetic reconnection seeded by a GEM-like perturbation
- we observed t Thank for you your attention ith the formation of
- in the exhausts, compound Petschek-like Slow Shock/ Rotational Discontinuity structures switch off the in plane component of the tangential magnetic field

Check my poster on the Multi-Level Multi-Domain method, a semi-implicit adaptive method for PIC simulations (tested on reconnection & turbulence)

Reference: Innocenti et al, Evidence of magnetic field switch-off in collisionless magnetic reconnection, ApJL, accepted (uploaded on ResearchGate)

The Multi-Level Multi-Domain method: a fully kinetic semi-implicit adaptive method for PIC simulations

Multi-Level Multi-Domain simulations of Electron Diffusion Regions in magnetic reconnection are as much as 70 times cheaper than their "traditional" PIC counterparts

The entire domain is simulated with ion scale resolutions; higher (electron scale) resolution is used in selected, smaller regions, e.g. in the Electron Diffusion Region

An exercise: measurement of the velocity of the electron jets ejected at the X point, $V_{e,x}/V_{A,i}$, with $V_{A,i}$ the ion Alfven speed