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• Framework



RG paradigm useful since it unifies the fundamental and effective theory point of view.

Framework

3

What is the fundamental nature of gravitational interaction?    Of spacetime?

• Sequences of theories with trasmutation/generation of (some) degrees of freedom?
• Single fundamental theory? QFT       Stringy        Discrete models           …

Criteria?           Experimental input (hard)       Simplicity/Beauty/Unification          … 

Simplest approach: 
A gravitational QFT described by a metric and diffeomorphism symmetry,  
whose dynamics reveals a UV fixed point with finite dim. critical surface. 

If bare action has no irrelevant operators, it is asymptotically safe. 
Otherwise description is effective, originating from a more fundamental theory.

Gravity: at least classical field theory and effective field theory are good descriptions. 

To be able to really answer this question we should probably be extremely lucky!



Interesting at pure theoretical level, including some kind of matter, 
and also for possible implications in cosmology 

Metric (euclidean) QFT formulation:  non local effective action 

Asymptotic safety paradigm and FRG techniques.                  (Talks: Reuter, Morris, Pawloswki)   

Background field formalism: 
- Issue of the double metric description / modified splitting Ward Identities. 
- Choose truncations as well as coarse-graining schemes. Simple but non trivial.                                                   

Many degrees of approximations in the covariant description: 
First single metric (field) description still non local truncation:  
(Level 0) 

Then maximally symmetric background (sphere), for a local “LPA” truncation,

Interacting gravity-scalar field model.
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Appendix C: Gauge fixing

Appendix D: Hessian for the F (�̄, R) truncation
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The second variations are of three kind: a pure gravitational variation, a pure scalar field

variation and a mixed one. In computing the other second variation contributions, according

to the LPA approximation, we shall consider constant scalar field background �̄ such that � =

�̄+ ��. The first one is given, for a linear parameterization of the metric, by
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To get to the exponential parametrization just replace
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and keep terms of second order in h. The parameter ⇣ allows continuous interpolation between

the two parametrizations.

Putting ⇣ = 1 we find that the Hessian in exponential parametrizationis equal to the one in

linear parametrization plus the terms:
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The second variation with respect to the scalar field around the background �̄ reads

1

2

Z
ddx

p
g��

�2�

����
�� =

Z
dx

p
ḡ
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(Narain, Rahmede)



Simplest approximation: expand                 around R=0 up to linear term, LPA truncation: 

Minimal truncation

I. INTRODUCTION

In the quest of an UV-complete quantum field theory of gravity, the search for a fixed point

using functional renormalization group methods has reached the point where one may hope to

go beyond finitely many couplings and study entire functional classes of truncations. The best

studied case is that of f(R) actions, where a fixed point is known to exist, and to exhibit nice

stability properties, when f is a polynomial [1–3]. The most advanced calculations have now

reached order R34 [4, 5]. However, the radius of convergence of the Taylor series of f around

the origin is finite and there is not much to be gained by pushing the expansion much further.

Rather, one would like to find a scaling solution for the whole function f . Several studies

have shed light on various aspects of this issue but have so far failed to reach a convincing

conclusion, at least in four dimensions [6–11]. An important fact that has been pointed out

in [8] is that the equation of [2, 3] does not admit complete solutions. The simpler equation

proposed in [6] admits solutions at least for positive R but then it was shown in [10] that all

perturbations around them are redundant, i.e. can be absorbed by field redefinitions. One thus

has to find a “better” equation, i.e. one admitting a discrete set of solutions with non-redundant

perturbations, or else show that no such equation exists. In order to gain some understanding

of what may be wrong with the equations of [2, 3, 6], it has been shown in [12] that the use of

background-dependent regulators in the flow equation for a scalar field can artificially lead to

similar pathologies. It is therefore important to understand whether di↵erent ways of applying

the background field method could solve this issue.

In this paper we will discuss similar problems but in a di↵erent context, namely a scalar field

non-minimally coupled to gravity. We will consider E↵ective Average Actions (coarse-grained

e↵ective actions depending on a cuto↵ k, usually abridged EAA) of the functional form:
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where S
GF

and S
gh

are gauge-fixing and ghost terms. The usual Einstein-Hilbert action is

contained in this truncation as the constant (�-independent) part of the action, while switching

o↵ gravity (i.e. setting g
µ⌫

= �
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) reduces the system to the well-studied Local Potential

Approximation (LPA) of the scalar field. The EAA �
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This theory contains the E-H action with a cosmological constant if we remove the scalar.

Previously studied (Narain, Percacci) (single metric, linear split) but difficult to study  
singular structure induced by the power expansion in the background scalar curvature R  
around the origin. ”Too far off-shell” !

Scalar tensor (ST)                                         E-H

 Pole in the denominator —> IR singularity, for  ST problem also in fixed point equation.

II. OLD EQUATIONS AND THEIR AILMENTS.

Flow equations for the functions F and V have been derived in [24], see also [15]. They were

then further simplified by Taylor expanding F and V around � = 0 to some finite order, and fixed

points have been searched within the resulting finite dimensional theory space. In d = 4 the only

nontrivial solution had constant f and v. It represents a non-interacting scalar field minimally

coupled to the well-known fixed point of pure gravity in the Einstein-Hilbert truncation. The

absence of other solutions was perhaps not too surprising, given that such solutions do not

exist for the pure scalar theory. In d = 3, however, pure scalar theory admits a nontrivial

scaling solution, the well-known Wilson-Fisher fixed point. In the simplest approximation,

known as the Local Potential Approximation (LPA), (I.2) reduces to the following equation for

the dimensionless potential v('):

v̇ = �3 v +
1

2
' v0 +

1

6⇡2(1 + v00)
(II.1)

The solution to this equation can be obtained by a variety of semi-analytic and numerical

methods. In view of this, there is perhaps greater reason to expect that a nontrivial scaling

solution may exist also for the system of the scalar field coupled to gravity. However, in [24]

no such solution was found. A Taylor expansion around � = 0 yielded fixed points all of whose

Taylor coe�cients are negative. Even if this corresponded to a genuine fixed point, it would

not be physically acceptable. If a fixed point existed and was analytic at � = 0 it would show

up as a fixed point for the Taylor coe�cients, so the failure to find a fixed point for the latter

implies that the functional equations do not have a global solution either. The question then

arises whether this reflects a genuine physical property of the system, or some problem with the

equations.

In order to discuss this we will not need to consider the whole equations, it will su�ce to

look at one term that comes from the contribution of the spin two excitations, namely

v̇ =
1

3⇡2


f

f � v
+ . . .

�
(II.2)

In a polynomial expansion of the solution around ' = 0, it turns out that v(0) < f(0) [24].

On the other hand, for large ' one expects the solutions to behave like v = A'6 + . . . and

f = B'2 + . . ., where the dots stand for inverse powers of '2. A solution with these boundary

conditions would have to cross the singularity at v = f . Although this cannot be ruled out, it
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is likely that the failure to find physically acceptable polynomial fixed points is related to the

existence of this singularity.

This conclusion is reinforced by the following two observations. First, that this issue concerns

the behavior of the dimensionless potential when the dimensionless field ' = � k�(d�2)/2 becomes

large. For d > 2 this is therefore an infrared issue. Second, when F and V are constant, one

can identify

V =
2⇤

16⇡G
; F =

1

16⇡G
(II.3)

and the fraction f/(f�v) reduces to 1/(1�2⇤/k2). The singularity we are discussing is there-

fore a generalization of the well-known infrared singularity at ⇤ = k2/2 that appears in most

treatments of the gravitational flow equation.

This singularity is an artifact of the way the beta functions for v and f are constructed. The

inverse propagator for the transverse, traceless spin-2 components hT
µ⌫

is given by:
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The last term comes from the expansion of the
p
g in the potential term, which in the standard

linear background field expansion contains terms of the form h
µ⌫

hµ⌫ . The origin of the trouble-

some term in the flow equation for the potential is this propagator, with R set equal to zero.

But if V 6= 0, putting R to zero means that we evaluate the flow equation on a configuration

that is far o↵ shell. Let us see what would happen if we evaluated the equation on shell. For

constant � the trace of the equation of motion of the metric implies

FR =
d

d� 2
V . (II.5)

If we use this relation to eliminate the R term, the spin-2 inverse propagator becomes

F (�r̄2) +
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(d� 1)(d� 2)
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This would contribute to the flow equation of v a term
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where the troublesome singularity at v = f is no longer present. This is strong evidence that

the singularity at v = f is unphysical.

From the discussion above it is tempting to try and expand the flow equation around a

solution that is (nearly) on shell. The virtues of such an approach have been discussed previously
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Spin 2 fluctuations, for                           , couple to the scalar potential via 
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where the troublesome singularity at v = f is no longer present. This is strong evidence that

the singularity at v = f is unphysical.

From the discussion above it is tempting to try and expand the flow equation around a
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The second variations are of three kind: a pure gravitational variation, a pure scalar field

variation and a mixed one. In computing the other second variation contributions, according

to the LPA approximation, we shall consider constant scalar field background �̄ such that � =
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Gravity sector: the metric
A way to avoid this problem: use an exponential parameterization of the metric:

by Benedetti [25] and Falls [26]. In the following we will not pursue this idea, but rather we

will employ a di↵erent parametrization of the field and choice of gauge fixing that automatically

avoid the issue.

III. THE NEW FLOW EQUATIONS

A. Exponential parametrization

Instead of the traditional linear quantum-background split g
µ⌫

= ḡ
µ⌫

+ h
µ⌫

we shall use in

this paper an exponential parametrization

g
µ⌫

= ḡ
µ⇢

(eh)⇢
⌫

(III.1)

where ḡ is a fixed but arbitrary background. This expansion has been used previously in [27]. See

also [28] for a recent discussion in a context that is closer to the present one. Some geometrical

motivation for the use of this formula is given in Appendix A. We assume in this paper that the

path integral measure is simple when expressed in terms of the field h thus defined. We discuss

in appendix B the Jacobian relating this measure to the one of the linear parametrization.

We will use the background metric ḡ to raise and lower indices. Then due to the symmetry

of g
µ⌫

and ḡ
µ⌫

also the tensor h
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= ḡ
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h⇢
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In contrast to the usual linear split, here also the covariant metric is nonpolynomial in the

quantum field hµ
⌫

. Another significant di↵erence is that, due to the formula det eh = etrh, only

the trace part of h enters in the definition of the determinant, at all orders. As a result
p
g

does not contribute to the action of traceless fluctuations, which are therefore independent of

the potential. We can split

hµ
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= hT
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+ 2!�µ
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where trh = 2d! and hT is tracefree. Then
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Remark:  at quantum level the off shell effective action is equivalent to  
other parameterizations if 

• a Jacobian is taken into account 
• the geometric formulation a la Vilkowisky-De Witt in considered, indeed                                                        

e.g. expectations values are not trivially related, …

We take the attitude that the metric has a non linear nature,  
naturally preferring the exponential parameterization.

Potential V couples only to the trace of the metric fluctuations. 

6

trh = h = 2d!

Think about frames and vielbeins… coset space

Remark: non linear transformation —>  momentum coarse-graining qualitative different!

As a change of variables the Jacobian is well defined.



Gravity sector: gauge fixing and ghosts
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Gravity is a gauge theory: physics does not change under diffeomorphisms.

Single metric: gauge fixing and ghost terms from the lowest order quantum gauge transf.:

�
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(h; ḡ) for h = 0. It is therefore su�cient to consider only the first term in (III.18). Since
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Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ +
1p
�r̄2

r̄
µ

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have
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First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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Decomposition of the metric and 
diffeomorphism generator in  
irreducible components:

Hilbert action
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We now proceed with the York decomposition for h:
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Appendix B: Transformation properties

The transformation of the metric under an infinitesimal di↵eomorphism ✏ is given by the Lie

derivative

�✏gµ⌫ = L✏gµ⌫ ⌘ ✏⇢@⇢gµ⌫ + gµ⇢@⌫✏
⇢ + g⌫⇢@µ✏

⇢ . (B.1)

As usual, we have to define transformations of ḡ and h which used in (A.1) yield (B.1). The

simplest one is the background transformation. If we treat ḡ and h as tensors under �✏, i.e.

�(B)
✏ ḡµ⌫ = L✏ḡµ⌫ ; �(B)

✏ hµ⌫ = L✏h
µ
⌫ . (B.2)

then also

�(B)
✏ (eh)µ⌫ = L✏(e

h)µ⌫ (B.3)

and (B.1) follows.
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h
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⌫
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✏
µ
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Using the background ḡ we can decompose the transformation parameter ✏µ in its longitudinal

and transverse parts:

✏µ = ✏Tµ + r̄µ

1p
�r̄2

 ; r̄
µ

✏Tµ = 0 . (III.20)

The inverse square root of the background Laplacian has been inserted conventionally in the

definition of  so that it has the same dimension as ✏µ. We can then calculate the separate

transformation properties of the York-decomposed metric under longitudinal and transverse

infinitesimal di↵eomorphisms. We have

�
✏

T ⇠µ = ✏Tµ ; �
 

! = �1

d

p
�r̄2 ; �

 

� =
2p
�r̄2

 , (III.21)

all other transformations being zero. Note that � and ! are gauge-variant but the combination

2! � 1
d

r̄2� is invariant. In terms of the redefined variables (III.10) we have

�
✏

T ⇠0
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=

r
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d
✏T
µ
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�0 = 2
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�r̄2 � R̄

d� 1
 . (III.22)

First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
g!

=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)
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with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is
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From (III.21) one then finds that the path integral must contain a ghost determinant
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See R. Percacci talk.
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Faddeev Popov determinants,  
varying the GF conditions:

�(⇠0µ)

(This gauge condition has been discussed previously in [32]. There, the ghost was a complex

scalar. This di↵erence is due to the di↵erent definition of  in (III.20).)

The unimodular gauge condition completely breaks the invariance under longitudinal in-

finitesimal di↵eomorphisms, but leaves a residual gauge freedom that consists of the volume-

preserving di↵eomorphisms, which are generated by the transverse vector ✏T . From (III.22) we

see that this residual freedom can be fixed by further choosing

⇠0
µ

= 0 , (III.25)

which gives rise to a ghost determinant det

✓q
�r̄2 � R̄

d

◆
=

r
det

⇣
�r̄2 � R̄

d

⌘
. Again, this

can be written as a path integral over an anticommuting real transverse vector

S
g⇠

=

Z
ddx

p
ḡ c

µ

ḡµ⌫
✓
�r̄2 � R̄

d

◆
c
⌫

(III.26)

Equations (III.23,III.25) define the “unimodular physical gauge”, which is the gauge condition

that, unless otherwise stated, will be used in the rest of the paper.

Before proceeding it is instructive, however, to think for a moment of an alternative choice.

Since the combination 2! � 1
d

r2� is gauge invariant, one may alternatively also pick the gauge

�0 = 0 . (III.27)

From (III.22) one then finds that the path integral must contain a ghost determinant

det

✓q
�r̄2 � R̄

d�1

◆
=

r
det

⇣
�r̄2 � R̄

d�1

⌘
. As usual, this can be rewritten as a path inte-

gral over a real anticommuting scalar ghost

S
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0 =

Z
ddx

p
ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)

This choice may seem more natural but for our purposes it is less useful. The reason is that if

we set �0 = 0, in the Hessian (III.11) there remains a kinetic term for ! which depends explicitly

on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.

C. Digression on Einstein-Hilbert gravity

Since physical gauges are not very familiar, in this section we make a little digression to test

our procedure in a setting that is better understood. We consider the special case when F and
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First we pick the “unimodular gauge” det g = det ḡ. 2 In unimodular gravity this is imposed

as an a priori condition on the metric: by definition the path integral is then over metrics

with fixed determinant. Here we start from the usual path integral over all metrics and take

det g = det ḡ as a partial gauge condition. This means that we have to take into account a ghost

term. To find the ghost operator we first observe that in the exponential parametrization the

unimodular gauge condition is

! = 0 . (III.23)

From (III.21) one then finds that the path integral must contain a ghost determinant

det(
p
�r̄2) =

p
det(�r̄2). As usual, this can be rewritten as a path integral over a real

anticommuting scalar ghost

S
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=

Z
ddx

p
ḡ c(�r̄2)c (III.24)

2 One often just sets det g = 1. This is incompatible with the choice of a dimensionful metric, that we prefer. Also
note that on a compact manifold the gauge group does not allow one to make constant rescalings of the metric,
so that the overall scale of the metric remains a physical degree of freedom. We ignore it in the following, since
it does not a↵ect the running of the terms in our truncation.
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ḡ c

✓
�r̄2 � R̄

d� 1

◆
c (III.28)
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on V , whereas if we set ! = 0 all kinetic operators are independent of V . Since our purpose is

precisely to avoid singularities due to the appearance of V in the kinetic operators, it is clear

that for us here the second choice is preferable.
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Since physical gauges are not very familiar, in this section we make a little digression to test
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�(h�const)

The pure E-H action has a very simple Hessian using gauge invariant variables:

E-H truncation with type I cutoff and gauge fixing I (h=0).

Let us consider for example the terms proportional to f(R̄) which comes from the expansion of
p
g. One has

Z
ddx

p
ḡf(R̄)

✓
d� 2

8d
h2 � d� 1

4d
�02

◆
(E.4)

One can write this expression in terms of s and �0 or in terms of s and h and easily observe that

the part quadratic in s is di↵erent in the two cases, so that gauge fixing with �0 = 0 or with

h = 0 leads obviously to di↵erent hessian in the part quadratic in the gauge invariant variable

s.

————————–
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Physical gauge fixing: set to zero the gauge dependent fluctuations.   
Path integral over gauge invariant fluctuations: s and 

I:     II:     ⇠0µ = 0 , �0 = 0⇠0µ = 0 , h = const.

hTT
µ⌫
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I. INTRODUCTION

In the quest of an UV-complete quantum field theory of gravity, the search for a fixed point

using functional renormalization group methods has reached the point where one may hope to

go beyond finitely many couplings and study entire functional classes of truncations. The best

studied case is that of f(R) actions, where a fixed point is known to exist, and to exhibit nice

stability properties, when f is a polynomial [1–3]. The most advanced calculations have now

reached order R34 [4, 5]. However, the radius of convergence of the Taylor series of f around

the origin is finite and there is not much to be gained by pushing the expansion much further.

Rather, one would like to find a scaling solution for the whole function f . Several studies

have shed light on various aspects of this issue but have so far failed to reach a convincing

conclusion, at least in four dimensions [6–11]. An important fact that has been pointed out

in [8] is that the equation of [2, 3] does not admit complete solutions. The simpler equation

proposed in [6] admits solutions at least for positive R but then it was shown in [10] that all

perturbations around them are redundant, i.e. can be absorbed by field redefinitions. One thus

has to find a “better” equation, i.e. one admitting a discrete set of solutions with non-redundant

perturbations, or else show that no such equation exists. In order to gain some understanding

of what may be wrong with the equations of [2, 3, 6], it has been shown in [12] that the use of

background-dependent regulators in the flow equation for a scalar field can artificially lead to

similar pathologies. It is therefore important to understand whether di↵erent ways of applying

the background field method could solve this issue.

In this paper we will discuss similar problems but in a di↵erent context, namely a scalar field

non-minimally coupled to gravity. We will consider E↵ective Average Actions (coarse-grained

e↵ective actions depending on a cuto↵ k, usually abridged EAA) of the functional form:

�
k

[�, g] =

Z
ddx

p
g

✓
V (�)� F (�)R+

1

2
gµ⌫@

µ

�@
⌫

�

◆
+ S

GF

+ S
gh

, (I.1)

where S
GF

and S
gh

are gauge-fixing and ghost terms. The usual Einstein-Hilbert action is

contained in this truncation as the constant (�-independent) part of the action, while switching

o↵ gravity (i.e. setting g
µ⌫

= �
µ⌫

) reduces the system to the well-studied Local Potential

Approximation (LPA) of the scalar field. The EAA �
k

[�] satisfies the renormalization group

flow equation [13, 14],

�̇
k

[�] =
1

2
STr

⇣
�(2)[�] +R

k

⌘�1
Ṙ

k

�
(I.2)

2

Expanding also around a constant background  

For the scalar field we also expand around a background �̄:

� = �̄+ �� . (III.6)

We then expand the action (I.1) to second order in h and ��. Collecting all the terms we find

Z
ddx

p
ḡ

"
F (�̄)

⇣1
4
h
µ⌫

(�r̄2)hµ⌫ +
1

2
h
µ⌫

r̄µr̄⇢h
⇢

⌫ � 1

2
(trh)r̄

µ

r̄
⌫

hµ⌫ +
1

4
(trh)r̄2(trh)

�1

2
R̄

µ⇢⌫�

hµ⌫h⇢� +
1

2
R̄

µ⌫

hµ⌫(trh)� 1

8
R̄ (trh)2

⌘

�F 0(�̄)

✓
r̄

µ

r̄
⌫

hµ⌫ � r̄2(trh)� R̄
µ⌫

hµ⌫ +
1

2
R̄ (trh)

◆
��

+
1

2
��(�r̄2 + V 00(�̄)� F 00(�̄)R̄)��+

1

2
V 0(�̄)(trh)��+

1

8
V (�̄)(trh)2

#
(III.7)

This is identical to equation (6) in [24], which was derived using a linear split, except for two

terms that are missing here:

�1

2
F (�̄)R̄µ⌫h

µ⇢

h⇢
⌫

� 1

4
(V (�̄)� F (�̄)R̄)h

µ⌫

hµ⌫ . (III.8)

The latter came from the expansion to second order of the square root of the determinant of g.

It is absent here because in the exponential parametrization the determinant depends only on

the trace part of h.

We then proceed with the York decomposition for the tracefree part of h:

hT
µ⌫

= hTT

µ⌫

+ r̄
µ

⇠
⌫

+ r̄
⌫

⇠
µ

+ r̄
µ

r̄
⌫

� � 1

d
ḡ
µ⌫

r̄2� , (III.9)

where r̄µhTT

µ⌫

= 0 and r̄µ⇠
µ

= 0. As usual it is convenient to further redefine

⇠0
µ

=

r
�r̄2 � R̄

d
⇠
µ

; �0 =
p
�r̄2

s

�r̄2 � R̄

d� 1
� . (III.10)

Collecting all terms we can rewrite the quadratic action in terms of the independent fields

hTT , ⇠0, �0, ! and ��:
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Simple mixed gravity-scalar hessian:

The hessian, gauge fixed (                         ) and for a shifted ⇠0µ = 0 , h = 0 �00 = �0 + · · ·
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Wetterich equation: choose some appropriate coarse-graining cutoff operator:  
type I, type II, or (scalar-) pure cutoff.

is diagonal:

Going to dimensionless quantities 
we can obtain the flow equations.
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(III.42)

The field �0 is invariant under volume-preserving di↵eomorphisms, so all three fields are physical.

As a final simplification we note that defining

�00 = �0 +
2d
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F 0(�̄)

F (�̄)

s
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d�1

�r2
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the gauge fixed hessian becomes diagonal:
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From here on we proceed as in [24] and for notational simplicity we shall remove the bars from

the background fields. We choose the cuto↵ in such a way that the modified inverse propagator

is identical to (III.44) except for the replacement of �r̄2 by P
k

(�r̄2) = �r̄2 + R
k

(�r̄2). We

note that applying this procedure directly to Eq. III.44, as in [24], would amount to a slightly

di↵erent definition of the cuto↵. Both procedures seem legitimate, and our choice is dictated

purely by later convenience. 6

With standard procedure, neglecting in our LPA truncation the anomalous dimension of the

scalar field, one arrives at the flow equations for the dimensionless functions of the dimensionless

field ' = k
2�d
2 �: f(') = k2�dF (�) and v(') = k�dV (�). We shall consider two approximation

schemes. As a first case we neglect derivatives of F
k

with respect to k in the r.h.s. of the flow

equation. The analysis of the scaling solutions of the resulting equations, and their eigenpertur-

bations, for d = 3 and d = 4 is given in Sections IV and V. With the insight obtained in this

way, in section VI we shall consider the full equation where the terms proportional to Ḟ are not

neglected. This means that we replace @
t

f ! 0 in the r.h.s. of the fixed point equation (but not

of the flow equation, hence also not in the analysis of eigenperturbations). The discussion here

will be short. In the rest of the paper we consider only the cases d = 3 and d = 4. In appendix

C we shall give the form of the flow equations for general dimension.

If we neglect Ḟ , in the r.h.s. the flow equations in d = 3 read

v̇ = �3 v +
1

2
' v0 +

f + 4f 02

6⇡2 (f(1 + v00) + 4f 02)
(III.45)

6 Neglecting Ḟ on the r.h.s. of the flow equation, the fixed point equations derived from the two procedures turn
out to be the same.
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We first consider a type I cutoff:

Scalar-gravity system
Truncation with even potentials: 
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Analysis of type I flow equations

10

To investigate fixed point solutions in this infinite dimensional space of “couplings” 
we consider in d dimensions the following cases:
A. The full equations 

B. The “one loop” approximation, neglecting          on the r.h.s of  the flow equations. Ḟk(�̄)

These equations have some analytic fixed point solutions (in any d):

A B
FP1
FP2                          -

FP3

v(') = v0

f(') = f0 +
⇠

2
'2

(v0A, f0A, ⇠ = 0) (v0B , f0B , ⇠ = 0)

(v03, f03 = 0, ⇠ < 0)

Eigenperturbations of these solutions for d=3 and d=4 cases analytically or numerically.

For example for FP1 in d=4  
for case A has 4 relevant and  
1 marginal directions:

The eigenperturbations around FP3 are di↵erent. We have analyzed them numerically but we

do not find it very useful to show them here.

B. d = 4

In four dimensions the fixed point equations are

0 = �4 v + ' v0 +
5

32⇡2
� 5'f 0

192⇡2f
� �f 0 (6f 00 + v00 + 1) + 6fv00

192⇡2 (3f 02 + f (1 + v00))
(VI.7)

0 = �2f + ' f 0 +
157

1152⇡2
� 5'f 0

288⇡2f
+

'f 0 (6f 00 + v00 + 1) + 4fv00

384⇡2 (3f 02 + f(1 + v00))

�
�
ff 00 + f 02� �2f2 + 'f 03 + 6ff 02 � 2'ff 0f 00�

64⇡2f (3f 02 + f(1 + v00))2
(VI.8)

The analytic solution FP1 is given by

v⇤ =
5

128⇡2
⇡ 0.003958 ; f⇤ =

157

2304⇡2
⇡ 0.006904 . (VI.9)

Linearizing the flow equation given in Eqs. (C.8,C.9) for d = 4 around FP1 we find:

0 = �(�+ 4)�v + '�v0 +
72

157

�
��f � '�f 0�� �v00

32⇡2

0 = �
✓
123

157
�+ 2

◆
�f +

123

157
'�f 0 � �f 00

32⇡2
+

�v00

96⇡2
(VI.10)

Studying numerically these equations we find that FP1 has three relevant and one marginal

direction (actually two marginal directions with an extremely small polynomial v component

with opposite sign, which may be originated from a single one by numerical errors):

✓1 = 4, wt

1 = (�v, �f)1 = (1, 0)

✓2 = 2.553, wt

2 = (�v, �f)2 = (�1, 1.236)

✓3 = 2, wt

3 = (�v, �f)3 = (c3v + '2, c3f )

✓4 = 0.553, wt

4 = (�v, �f)4 = (c4v0 � '2, c4f + 1.236'2)

✓5 = 0, wt

5 = (�v, �f)5 = (c5v0 + c5v0'
2 + '4, c5f0 + c5f2'

2) (VI.11)

with c3v ' �0.005401, c3f ' 0.0487, c4v ' �0.002304, c4f0 ' �0.006343, c4f0 ' �1.2361,

c5v0 ' �0.0000513, c5v2 ' �0.00324, c5f0 ' �0.00001268, c5f2 ' �0.02924.

The fixed point FP2 is absent but FP3 is again present in the same position: v⇤ = 3
128⇡2 ,

f⇤(') = � 41
420'

2. It has four relevant directions, with critical exponents 4, 2.104, 1.574, 0.2475.

The eigenvector corresponding to eigenvalue 4 has components (�v, �f) = (1, 0), the others have

30

(v0B , f02B , ⇠ > 0)

f0 = 0.0069v0 = 0.00396



Further analysis of case B

11

In d=3 we expect to exists a deformation of the WF fixed point which in flat space 
belongs to the Ising universality class.

Shooting method from the origin:

We have employed shooting methods (Morris), from the origin and the asyptotic region  
and various types of polynomial expansions as well. 

FIG. 2: Plot of the maximum value of ' reached by the numerical integrator in the most interesting

region of the initial conditions 0.0055 < v(0) < 0.0070 and 0.050 < f(0) < 0.065. The jagged appearance

of the top ridge is a numerical artifact.

One tries to solve numerically the fixed point equations v̇ = 0, ḟ = 0 with the initial conditions

v0(0) = 0 and f 0(0) = 0. One can then plot how far the numerical routines can go, as a function

of the initial conditions v(0) and f(0). Fixed points then typically appear as spikes in this

graph. We have charted an area around the origin in the v(0)-f(0) plane. There is a large

region for v(0) < 0 and f(0) > 0 where the solution easily extends up to arbitrarily large '.

These solutions all have potentials that are unbounded from below (they behave asymptotically

as in equation (IV.20) below). For f(0) < 0 there are areas where the behavior look quite

chaotic. We cannot say much about the system for such initial conditions. The most interesting

area is a mountainous triangle in the quadrant v(0) > 0 and f(0) > 0, enlarged in Fig. 2. It

is relatively smooth but the ridges become quite sharp near its vertices and there are distinct

peaks at the end of each ridge. Two of these can be seen clearly if we cut the graph along the

line v(0) = 1/(18⇡2), which is common to the two fixed points (IV.1,V.10). Then the two fixed

points appear as very clear spikes at initial conditions that agree numerically with the values of

�0 and ⇠0 of the polynomial solutions, as well as the “exact” values. 8 The nontrivial fixed point

can be seen by cutting along the line v(0) = 0.0068, as seen in Fig. 3. One should be careful

in interpreting such plots. They probably reveal as much about the workings of the numerical

8 We note in passing that the fixed point FP3, which also lies on the same line, cannot be seen by this technique
because it corresponds to the initial condition f(0) = 0 where the equations in normal form have a singularity.
For the same reason this solution also does not show up among the solutions of the polynomial expansion
around ' = 0.
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Three spikes corresponds to FP1, FP2, 
and possibly a non trivial WF solution. 
But this solution, (with also polynomial analysis),  
has the property to cross f=0 starting from f(0)>0,  
so that is defined as an analytic continuation.

For d=4 from the shooting method give no 
indications that a WF type of fixed point do exist, 
similarly to the flat space case.  
In the region shown we see FP1 and FP2.

FIG. 6: Plot of the maximum value of ' reached by the numerical integrator depending of the initial

conditions 0.0023 < v(0) < 0.00242 and 0.004 < f(0) < 0.006 .

We have also tried to investigate solutions for which there exist a value '0 where f('0) = 0

by analyzing them in terms of a polynomial expansion, similarly to the d = 3 case. The two

parameters which parametrize the solutions are again '0 and v('0). Trying to fix them by

numerically evolving towards the origin we find that the solution such that v0(0) = f 0(0) = 0

can be reached only for '0 ! 1, in which case one reproduces FP1 for small ' values. No

nontrivial solution with f changing sign seems to exist. Thus all methods point to the same

conclusion, namely that there are no global scaling solutions in d+ 4 beyond the ones we have

found in closed form.

VI. SOME RESULTS KEEPING THE Ḟ DEPENDENCE ON THE R.H.S.

We discuss here the flow equations keeping the terms proportional to Ḟ in the r.h.s.. We

proceed in a way similar to the previous analysis of the last two sections, considering the two

cases in d = 3 and d = 4 dimensions. We find two analytic scaling solutions, which correspond

clearly to the solutions FP1 and FP3 of the previous sections, but the solution FP2 is not present.

In appendix C we give the general results for d dimensions for the fixed point equations, their
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More on case A

12

The search of a WF fixed point for these full equations was recently addressed  
using pseudospectral methods (based on Chebyshev polynomials).         (Borchardt-Knorr)

For d=3 they show that there exist a WF-like solution, which is constructed 
with great precision. It has 4 relevant directions. f is always positive.

Indeed this solution can be found by shooting methods 
and standard polynomial expansion analysis  

The full equations admit this solution, contrary to the “one loop” approximation. 
Schemes based on a spectrally adjusted cutoff, both split symmetries are broken.

that we have found here, compared e.g. to those of [24] or to the flow equation in the physical

gauge ⇠0
µ

= �0 = 0 (as discussed in the end of section III.B). The situation is similar to that of

f(R) gravity, where di↵erent equations turned out to have rather di↵erent solution spaces [8].

The answer seems to be that some approximations are too drastic: all equations are good enough

to find the fixed point within finite dimensional truncations, but the study of its properties in

an infinite dimensional function space is more delicate and requires better approximations. It

has been shown in [12] that pathological features resembling those encountered in f(R) gravity

can be artificially induced even in pure scalar theory by an improper use of the background

field method. In particular, one should pay close attention to the violation of split symmetry

(A.3), which, at linear level, amounts to �� ! �� + � , �̄ ! �̄ � � in the scalar sector and

h
µ⌫

! h
µ⌫

+ �h
µ⌫

, ! ! !+ �!, ḡ
µ⌫

! ḡ
µ⌫

� �h
µ⌫

�2ḡ
µ⌫

�! in the gravitational sector. While an

investigation of this point will be necessary, it seems that the equations derived here are already

powerful enough to discover at least some of the scaling solutions in the theory. This may be

a hint that, within the single-field approximation, the use of the exponential parameterization

and of the unimodular physical gauge is to be preferred.

Let us note that unimodular gravity corresponds to the case where the conformal fluctuations

h are completely absent. For such a theory, in the single field approximation for the average

e↵ective action, the flow equation is obtained from the one of full gravity in the unimodular

gauge by removing the corresponding ghost contribution, which is a constant term in both

equations for v and f . Since the running of f does not depend on v but only on its derivatives,

this is consistent with the fact that in unimodular gravity the constant term in the potential is

an integration constant. In this framework any constant value of v at the fixed point would not

contain any physical information.

There are several obvious extensions of the truncation that we plan to return to in the

future. Also, we have focused here mainly on the mathematical properties of the system of flow

equations, but ultimately one is interested in physical applications. In this regard we observe

that the fixed point FP2 in d = 4 has the properties that were discussed in [15] as prerequisites

for the construction of interesting cosmological models. With the linearized perturbations given

here and with numerical integration of the flow equation it will be possible to analyze in detail

several scenarios.
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Background-scalar independent cutoff

13

A linear cutoff                                           (Litim)

Pure cutoffs (not spectrally adjusted) to respect the scalar split symmetry.  
One cannot avoid instead the gravitational background dependence.

leads to more complicated equations.

We can find easily the constant analytic solution (FP1) for any d.

E.g. in d=4 and            we have

Rk(z) = �ka(k2 � z)✓(k2 � z)

� = 1

Spectral pattern similar to the FP1 
of case A.

We have to complete the search for other less trivial global solutions, also in d=3.
Other interesting cutoff we want to investigate: power like type   (Morris)

v0 = 0.03314 f0 = 0.01551

✓1 = 4, wt

1 = (�v, �f)1 = (1, 0)

✓2 = 2.273, wt

2 = (�v, �f)2 = (�1, 0.748)

✓3 = 2, wt

3 = (�v, �f)3 = (�0.0121 + '2, 0.00774)

✓4 = 0.273, wt

4 = (�v, �f)4 = (0.00382� '2,�0.00343 + 0.748'2)

✓5 = 0, wt

5 = (�v, �f)5 = (2.28⇥ 10�4 � 0.0726 '2 + '4,�1.97⇥ 10�4 + 0.0464 '2)
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• We also propose the use the so called “physical gauge fixing” related 
      to the metric decomposition in irreducible spin components. 

Conclusions
•  Scalar field interacting with gravity. 
      Simple truncations may lead to difficulties to find fixed point solutions 
      and in constructing global flows.

• The choice of how to parametrize the metric fluctuations can be useful. 
     The exponential parametrization, being an interesting choice by itself, 
      can help to bypass some bad features brought in by poor truncations. 

•  Compared to a previous approach we find some analytical solutions. 
     In d=3 they admit a WF scaling solution. We employed spectrally  
     adjusted and also scalar-pure cutoff.
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• We have also used the same approach the analyze the linear O(N) 
     scalar model coupled to gravity. (See Percacci talk)     



Outlook

• Background metric independence has to be addressed.  
     This is related to the double metric framework and the msWI.

• In this framework the reduced amount of off-shellness gives less difficulties  
     in constructing global flows from the UV to the IR. 
     Needed for any phenomenological application.

• At the level of larger truncations we have started to analyze the local 
    truncation based on a lagrangian 
    Much simpler equations that in a previous work.

15

Fk(⇢, R)

• Anomalous dimensions? Fermions and vectors?

• Fermions: scenario related to an old idea of  R. Brout:  
    an effective scalar (inflaton) generated by the condensation of fermions 
    via gravitational interactions?
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Many thanks for your attention!


