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This talk is about a calculation

But it is worth putting it into context



Any field theory is renormalisable once all 
terms compatible with symmetries are added 

into the Lagrangian

Weinberg



If we could follow the RG flow in the infinite-
dimensional space of couplings, the flow could take 

us to “nice” UV fixed points 

The idea of asymptotic safety

In the context of renormalisable theories, realised for 
asymptotically-free theories



It is generally believed that “nice” UV fixed points of 
non-renormalisable theories (such as gravity) are of 

non-perturbative nature

Cannot say anything using perturbative methods

Have to use Wilsonian non-perturbative 
interpretation of the RG flow

Most of the available results are of this nature, but 
their interpretation is not without difficulty



In this talk, let me see how far one can go staying 
perturbative



Perturbative renormalisation:

Divergences appear because propagators are generalised 
functions, and their products (or products of their derivatives) 
are ill-defined

Can make sense of such products of generalised functions, 
but ambiguities arise

These are of the form of a dependence on some arbitrary 
energy scale, and come in typical logarithmic form

The dependence on the (log of) this energy scale is the 
same as the dependence on the logarithm of the energy, 
and this allows to track the energy logarithms

Perturbative RG flow resums the energy logarithms

In practice one computes the “divergencies” to extract the RG flow



In principle, no problem in applying this programme to a 
non-renormalisable theory

In practice, has to deal with higher-dimension operators, 
and computations become challenging, to say the least

It seems that to compute even at one-loop, one needs to 
start with the most general Lagrangian at the tree level

This is clearly impossible in practice



However, and this is the crucial insight:

In perturbative calculations, the higher-dimensional 
operators (typically) do not affect the RG flow of the 

lower-dimensional ones



Example:

Imagine one adds an F^3 term to the tree-level Yang-Mills 
Lagrangian

Effect on the one-loop flow of the g2 in LYM =
1

4g2
(Fµ⌫)

2

Answer: this operator does not affect the flow, the flow is 
unaware of a possible presence of this operator in the Lagrangian

But g affects the flow of the coupling constant for F^3

Lower-dimensional operators are relevant for higher-
dimensional ones, but not the other way around
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Philosophy:

Can work with a number of operators, and what 
has not been added to the tree-level Lagrangian 

will not affect the flow of what is included 

So, can trust the computed (one-loop) RG flow, at 
least in the regime where the perturbation theory is 

valid (i.e. when one can neglect the second loop)

One does not need all operators to do meaningful 
computations

Only applies to perturbative RG flow. 
Functional RG behaves completely differently! 



The gravity example:

One loop renormalisable: the arising divergences can be absorbed 
into the metric redefinition, as well as renormalisation of the EH

GR one-loop counterterm Christensen and Duff ’80
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On-shell EH action 
(modulo volume)



⇤ cannot run

@(⇤G)

@ log(µ)
= � 29

5⇡
(⇤G)

2

small, becomes even smaller in the UV(⇤G)

Interpretation:

This result must be insensitive to adding (Weyl)3

required at two loops

Asymptotic freedom, G weakens in the UV

Can we check this by an explicit calculation?

Leads to fourth order differential operator, 
challenging but not impossible



Gravity as theory of connections

Formalism that describes geometry using a 
connection, not metric as the main variable

g = @A
F = @A

Both metric and the curvature are 
derivatives of the connection

Field equations @2A = A

second order PDE’s on the connection

On-shell

Ricci = @2g = @3A = @A = g

Weyl = @2g = @3A = @A = F

Requires non-zero 
cosmological constant



Linearised Lagrangian is of the form

L(2) = (@A)2

Allows to incorporate (Weyl)3 as (@A)3 type term

More generally can consider

L =

1X

n=2

gn(@A)
n
+ lower in derivatives terms

An infinite number of interactions interesting from the 
metric viewpoint

This formalism does not lead to an increase in the order of 
the operators arising - still second order



“Deformations” of Yang-Mills theory

To gain intuition and develop technology, can play 
similar games with the usual Yang-Mills theory

Consider 

L =
1X

n=2

gnF
n = M4f(F/M2)

where     is an arbitrary Lorentz and 
gauge-invariant function of the curvature

f
F = dA+ (1/2)[A,A]

Field equations dA

✓
@f

@F

◆
= 0

second-order PDE’s on the connection

M some energy scale

Just an effective field theory 
Lagrangian, but without 

derivatives of the curvature

Euler-Heisenberg



Calculations become possible and mimic what happens in 
“deformations” of General Relativity when takes

self-dual part of 
the curvature

Or, using spinor notations

F = (F a
µ⌫)sd ⌘ 1

2
F a
µ⌫ +

1

4
✏µ⌫

⇢�F a
⇢�

a Lie algebra index

F = F a
AB A,B = 1, 2

spinor indices (unprimed)L = M4f(F a
AB/M

2)

Linearisation around an arbitrary background

L(2) =
1

2
(f 00)abABCD(dA)aAB(dA)

b
CD +M2(f 0)aAB [[A,A]]aAB

(f 00)abABCD ⌘ @2f

@F a
AB@F

b
CD

(f 0)aAB ⌘ @f

@F a
AB

Second-order, but 
non-Laplace type

(dA)aAB ⌘ d(AA0AaA0

B)

[[A,A]]aAB ⌘ fabcAb
AA0Ac

B
A0

self-duality makes things simpler



But the problem can be converted into a Laplace-type 
one using the first order-formalism

BaAB auxiliary field

Legendre transform of f(F a
AB/M

2)

Linearised Lagrangian

L = BaABF a
AB �M4V (Ba

AB/M
2).

V (BaAB/M2)

L(2) = 2baAB(da)aAB +BaAB [[a, a]]aAB � 1

2
(V 00)abABCDbaABbbCD

After gauge-fixing can write as

L(2) =
�
b a

�✓ V 00 \d
\d B

◆✓
b
a

◆
\d - Dirac operator



The square of the arising operator is of Laplace-type

✓
V 00 \d
\d B

◆2

=

✓
\d2 + (V 00)2 V 00\d+ \dB
\dV 00 +B\d \d2 +B2

◆

Can now compute the divergent parts of the regularised 
determinant in the usual way, using the heat kernel

\d2 = �+ F

Result: after a (local) field redefinition, this family of “deformed” 
non-renormalisable Yang-Mills theories is one-loop renormalisable

like GR at one-loop!



The arising renormalisation group flow

We compute one-loop divergences using the background field method. We work in Riemannian
signature. The one-loop renormalisability of (1) means that, after a local field redefinition, the re-
maining one-loop divergences are taken care of by counter terms of the type already contained in (1).
Thus, the one-loop running of the whole infinite set of the coupling constants can be encoded as the
running of the dimensionless function f

@f(x)

@ logµ
= �

f

(x), (2)

where �
f

is some gauge- and Lorentz-invariant function of the dimensionless self-dual part of the
curvature xa

AB

:= F a

AB

/M2. The result of our calculation is

�
f

(x) =
1

(4⇡)2
1

6

h
xab
AB

xbaAB � 3((f 00)�1)ab
AB

AB(f 0)bc
MN

xcaMN (3)

+3((f 00)�1)ab
AM

BN (f 0)bc
B

C((f 00)�1)cd
CN

DM (f 0)da
D

A

i
.

Here (f 0)aAB and (f 00)abABCD are the matrices of the first and second derivatives of the function f

(f 0)aAB :=
@f

@xa
AB

, (f 00)abABCD :=
@2f

@xa
AB

@xb
CD

, (4)

and (f 00)�1 is the matrix inverse to f 00. We also use the notation

xab
AB

:= Caebxe
AB

, (f 0)ab
AB

:= Caeb(f 0)e
AB

,

where Cabc are the Lie algebra structure constants.
Note that the result (3) is a homogeneity degree zero function in f , as it should be. As a further

check, we note that for Yang-Mills

fYM(x) =
1

4g2
(xa

AB

)2, (5)

and thus

(f 0
YM)ab

AB

=
1

2g2
xab
AB

, ((f 00
YM)�1)ab

ABCD

= 2g2�ab✏
A(C✏|B|D).

A simple computation then gives

�YM
f

=
11C2

6(4⇡)2
(xa

AB

)2, (6)

where C2 is the quadratic Casimir. This gives the correct running of 1/4g2.
When both the Lagrangian (1) and the �-function (3) are expanded in powers of xa

AB

, one can
read o↵ an infinite set of beta-functions for the couplings stored in f . In the main text we carry out
this exercise for the first non-trivial coupling parameterising the F 3 interaction. We reproduce the
result obtained in [1] by a di↵erent method. Some further comments on the interpretation of (3) are
contained in the Discussion section.

Let us give an outline of how (3) is computed. All details are given in the main text. The
straightforward application of the background field method to (1) runs into a di�culty. The problem
is that the second-order operator that arises by linearising (1) is not of Laplace-type, even after
gauge-fixing. We alleviate the problem by passing to the first-order formulation, by ”integrating in”
an auxiliary field. The linearisation of the resulting Lagrangian then gives a first-order operator that
turns out to be of Dirac-type. Its square is of Laplace-type, which makes the well-developed heat-kernel
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The YM example
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More involved example

L =
1

4g2
(F a

AB)
2 +

↵

3!g2M2
fabcF a

A
BF b

B
CF c

C
A

in agreement with our philosophy, the flow of       is unchangedg2

For the flow of     we obtain↵

@(↵g)

@ log(µ)
=

↵g3C2

(4⇡)2

It is      that tells     how to changeg2 ↵

grows in the UV as could be expected from a 
non-renormalisable interaction

↵



Discussion

Can do meaningful (one-loop) calculations even in 
non-renormalisable theories

Results can be trusted (when perturbation theory can be) 
because what has not been included at the tree level should 
not affect the flow of what has been included

With some tricks, even the problem for higher-derivative 
operators can be reduced to Laplace-type operators

The calculation for L = GR+
1X

n=3

gn(Weyl)n

using such tricks is in progress

Interpretation is clean, RG flow for 
“observable” on-shell couplings



What can one hope to learn this way?

Such perturbative caclulations for non-renormalisable theories 
have been hardly ever done: surely surprises await us

It is not impossible that there are some sufficiently large families 
of non-renormalisable theories (but smaller than the general EFT) 
that are renormalisable, in the sense that if one is in, one stays in

Some yet unknown UV fixed points may be of perturbative 
nature and thus discoverable by doing one-loop computations 
for sufficiently large families of theories

The computed RG flow for “deformations” of YM is still to be understood 

Then one can compute



Perturbative (one-loop) RG flow calculations with 
non-renormalisable theories can be done, and results 

can be trusted (in appropriate regimes)

Take home message

Thank you!

The one-loop renormalisability of GR is 
just the tip of an iceberg 

Potentially there is new physics discoverable this way


