Is there a C-Theorem in

4D Quantum Gravity?
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1. Background Independence

in Quantum Gravity

2. The EAA as a mode-counting device

3. C-function for asymptotically safe
quantum gravity: a candidate






























30F

~0.05F a

-010

_____

251 1

20

GT [mpy]

L L L
20 25 30

0‘5 1‘0 15 .|
k /mp

Figure 13. Type (I11a)PY"-(Attr)Btrajectory: dimensionful couplings.
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Figure 14. Type (I11a)P¥"-(Attr)Btrajectory: the coefficients as they appear in the EAA.

Note again the vanishing 1/ GE and AE / GE, indicative of split-symmetry restoration in the

limit & — 0.
dashed (red): —————— e —— I = sm (single-metric)
solid (dark-blue): I'=Dyn=(p) forp>1
solid (light-blue): I=(0)

dot-dashed (blue): — I=B
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Figure 5. The dashed (black) and solid (red) curve show the k-dependent positions of
(Attr)B(k) and SolZ(k) on the gB-AB-plane. Recall that SolZ(k) is an RG trajectory while
(Attr)B(k) is not. The (orange) dotted curve indicates the boundary ‘9(g", AB)’ where the
B-couplings diverge. The clocks mark equal-time positions on the curves; the black filling
indicates the elapsed RG time for upward evolution. The dashed (blue) arrows indicate the
direction in which Sol(k’) is pulled at ‘time’ k’, namely the position of the attractor at
this instant of time, (Attr)B(k’). While initially, at k& = 0, the trajectory Sol2(0) coincides
with (Attr)B(0) the curves depart due to their different velocities. They meet again at
NGE@NGEyn-FP for k — co. However, the motion of (Attr)B(k) at intermediate scales
is encoded in the indentation of the Sol® (k) curve before it approaches NG?@NGEyn-FP.
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Figure 4. The B-phase portraits at increasing scales k. The underlying type (IIIa)P¥?
trajectory in the Dyn-sector is shown in the inset on the right, and the current RG time is
marked with a star therein. The arrows point towards the IR and picture the instantaneous
vector field in the B-sector. The (red) solid and the (gray) dashed curve highlight two im-
portant solutions in the B-sector, namely Sol? (k) and Sol%yo) (k), respectively. Their current

position is indicated by the (green) diamond and the (violet) six-pointed star, respectively.
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Figure 1. The inverse of Y3 for a typical single-metric type Illa trajectory. The inset

shows its k-derivative whose positive values indicate a violation of monotonicity.



0.00
04f ]
—005]
r 02l
'3
~_0.10 » 00
>.‘ g ~
~ —
— &-02f
'3
~015 iy
[ -06f
~020
-08L ! L L
05 10 15 20 25 30
k/mp)

k/mp)

Figure 2. The left plot shows 1/Y} and its scale derivative for a typical bi-metric type
[IIa trajectory that restores split-symmetry in the IR. It is based on the RG equations of
[I]. For these trajectories, %} is always found to be perfectly monotone. The inset in the

left plot shows kOx1/Y}, which is decomposed in the right plot into the derivative of the

split-symmetric component 1 /szht_sym’(l) (dashed, gray curve) and of A(1/Y}) (solid, gray

curve). Neither of the two contributions is negative definite separately, but their sum is

(solid, dark red curve).
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Figure 3. The function 1/Y}, as in Fig. [ but now based on the RG equations of [II].
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Figure 4. The left plot shows the function 1/Y} for a bi-metric trajectory of type I1Ia that
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does not restore split-symmetry in the IR. It is based on the RG equations of [I]. We observe
a sign-change of k0k(1/Y) at moderate values of k, indicating a violation of monotonicity.

In the decomposed form of k0, (1/Y), shown in the right plot, we see that the contribution

lit-sym, (1
1/sz sym, (1)

is in fact monotone, but the correction term A(1/Yy) is not, and neither is

their sum. Not restoring split-symmetry in the IR results in a violation of the monotonicity

of €}, along the trajectory considered.
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Figure 5. The function 1/Y}, as in Fig. 4, but now based on the RG equations of [II].
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Figure 6. This series of snapshots represents the gB-AB-plane at four RG times which
increase from the upper left to the lower right diagram. They are given by the maximum k-
value of the incomplete dynamical trajectory k (g,?yn7 )\Eyn) shown in the respective inset.
The shaded regions correspond to Tf(k) at that particular time; hence every trajectory in
the shaded (white) region will give rise to a positive (negative) value of k0 %} at the instant
of time k. Furthermore, two different B-trajectories that are evolved upward (towards
increasing scales k) are shown at the corresponding moments. The one passing the point
P, (P,) is split-symmetry violating (restoring). The symmetry restoring trajectory starts
its upward evolution close to P, the position of the running UV attractor [?]; we see that
this trajectory never leaves the shaded area, and thus its %3-function is strictly monotone.
This is different for the trajectory through P;: Attracted by the running UV-attractor, it
is pulled into the shaded region, thus unavoidably crossing the boundary of Tf(k:), which

causes a sign flip of 0;%}, rendering %} non-monotone.
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Figure 1. The quantity (9xI'x)[0; ®5°] is evaluated for a typical single-metric (left) and

split-symmetry violating bi-metric (right) trajectory. In both cases, it is seen to be negative
for certain scales. This indicates a severe failure of the underlying approximation since, at

the exact level, (OxI'x) is known to be positive at all field arguments and for any k.
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Figure 2. The quantity (0xIx)[0; ®5] is now evaluated for a split-symmetry restoring
bi-metric trajectory. It always stays non-negative, even in those regimes where the single-
metric or the split-symmetry violating bi-metric (see inset) trajectories fail the pointwise

monotonicity test.











