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Figure 12. Type (IIIa)Dyn-(Attr)Btrajectory: dimensionless couplings.
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Figure 13. Type (IIIa)Dyn-(Attr)Btrajectory: dimensionful couplings.
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Figure 14. Type (IIIa)Dyn-(Attr)Btrajectory: the coefficients as they appear in the EAA.

Note again the vanishing 1/GB
k and ΛB

k /GB
k , indicative of split-symmetry restoration in the

limit k → 0.

dashed (red): I = sm (single-metric)

solid (dark-blue): I = Dyn ≡ (p) for p ≥ 1

solid (light-blue): I = (0)

dot-dashed (blue): I = B
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NGFP

Figure 5. The dashed (black) and solid (red) curve show the k-dependent positions of

(Attr)B(k) and SolB
•

(k) on the gB-λB-plane. Recall that SolB
•

(k) is an RG trajectory while

(Attr)B(k) is not. The (orange) dotted curve indicates the boundary ‘∂(gB, λB)’ where the

B-couplings diverge. The clocks mark equal-time positions on the curves; the black filling

indicates the elapsed RG time for upward evolution. The dashed (blue) arrows indicate the

direction in which SolB
•

(k′) is pulled at ‘time’ k′, namely the position of the attractor at

this instant of time, (Attr)B(k′). While initially, at k = 0, the trajectory SolB
•

(0) coincides

with (Attr)B(0) the curves depart due to their different velocities. They meet again at

NGB
+⊕NGDyn

+ -FP for k → ∞. However, the motion of (Attr)B(k) at intermediate scales

is encoded in the indentation of the SolB
•

(k) curve before it approaches NGB
+⊕NGDyn

+ -FP.
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Figure 4. The B-phase portraits at increasing scales k. The underlying type (IIIa)Dyn

trajectory in the Dyn-sector is shown in the inset on the right, and the current RG time is

marked with a star therein. The arrows point towards the IR and picture the instantaneous

vector field in the B-sector. The (red) solid and the (gray) dashed curve highlight two im-

portant solutions in the B-sector, namely SolB
•

(k) and SolB(0,0)(k), respectively. Their current

position is indicated by the (green) diamond and the (violet) six-pointed star, respectively.
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Figure 1. The inverse of Ysm
k for a typical single-metric type IIIa trajectory. The inset

shows its k-derivative whose positive values indicate a violation of monotonicity.
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Figure 2. The left plot shows 1/Yk and its scale derivative for a typical bi-metric type

IIIa trajectory that restores split-symmetry in the IR. It is based on the RG equations of

[I]. For these trajectories, Ck is always found to be perfectly monotone. The inset in the

left plot shows k∂k1/Yk, which is decomposed in the right plot into the derivative of the

split-symmetric component 1/Y
split-sym,(1)
k (dashed, gray curve) and of ∆(1/Yk) (solid, gray

curve). Neither of the two contributions is negative definite separately, but their sum is

(solid, dark red curve).
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Figure 3. The function 1/Yk as in Fig. 2, but now based on the RG equations of [II].
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Figure 4. The left plot shows the function 1/Yk for a bi-metric trajectory of type IIIa that

does not restore split-symmetry in the IR. It is based on the RG equations of [I]. We observe

a sign-change of k∂k(1/Yk) at moderate values of k, indicating a violation of monotonicity.

In the decomposed form of k∂k(1/Yk), shown in the right plot, we see that the contribution

1/Y
split-sym,(1)
k is in fact monotone, but the correction term ∆(1/Yk) is not, and neither is

their sum. Not restoring split-symmetry in the IR results in a violation of the monotonicity

of Ck along the trajectory considered.
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Figure 5. The function 1/Yk as in Fig. 4, but now based on the RG equations of [II].
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Figure 6. This series of snapshots represents the gB-λB-plane at four RG times which

increase from the upper left to the lower right diagram. They are given by the maximum k-

value of the incomplete dynamical trajectory k 7→ (gDyn
k , λDyn

k ) shown in the respective inset.

The shaded regions correspond to T B
+ (k) at that particular time; hence every trajectory in

the shaded (white) region will give rise to a positive (negative) value of k∂kCk at the instant

of time k. Furthermore, two different B-trajectories that are evolved upward (towards

increasing scales k) are shown at the corresponding moments. The one passing the point

P1 (P2) is split-symmetry violating (restoring). The symmetry restoring trajectory starts

its upward evolution close to P2, the position of the running UV attractor [?]; we see that

this trajectory never leaves the shaded area, and thus its Ck-function is strictly monotone.

This is different for the trajectory through P1: Attracted by the running UV-attractor, it

is pulled into the shaded region, thus unavoidably crossing the boundary of T B
+ (k), which

causes a sign flip of ∂kCk, rendering Ck non-monotone.
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Figure 1. The quantity (∂kΓk) [0; Φ̄sc
k ] is evaluated for a typical single-metric (left) and

split-symmetry violating bi-metric (right) trajectory. In both cases, it is seen to be negative

for certain scales. This indicates a severe failure of the underlying approximation since, at

the exact level, (∂kΓk) is known to be positive at all field arguments and for any k.
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Figure 2. The quantity (∂kΓk) [0; Φ̄sc
k ] is now evaluated for a split-symmetry restoring

bi-metric trajectory. It always stays non-negative, even in those regimes where the single-

metric or the split-symmetry violating bi-metric (see inset) trajectories fail the pointwise

monotonicity test.








