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Introduction
• Diffeomorphism invariance underlies quantum gravity. 

• Asymptotic safety provides a possible continuum limit for gravity for which we 
expect universal  (i.e. regulator independent) scaling behaviour. Wish to compute: 

!
!
!

• Issues of functional renormalisation group approach: 

 - gauge dependence 

 - poles due cosmological constant in a massless theory 

 - complex critical exponents (qualitatively difference from lattice studies (e.g.  
 Hamber 2000 )) 

!
• These may all stem from approximations where diffeomorphism invariance is lost. 

!
!

• Aim: Restore gauge invariance to improve the reliability of perturbative/non-
perturbative calculations.
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Semi-classical theory
• Aim to find a gauge independent one-loop beta function generated by graviton 

fluctuations: 

!
!

• One loop effective action: 

!
!
!

• Standard approach: 

!
• Problem: linearised theory, 

!
!
!

 is not gauge invariant if background metric is off-shell (Deser, Henneaux gr-qc/0611157):
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Semi-classical theory
• This leads to the off-shell one-loop effective action being gauge dependent for the linear 

parameterisation. 

• Gauge independence is restored only by going on shell 

!
!

• However this obstructs the derivation of the beta function for Newton’s constant using 
covariant heat kernel methods. 

• The linearised theory (and hence the naive semiclassical theory) is not unique and 
depends on the parameterisation(s) of the metric fluctuations (see e.g. Nink 2014). 

!
!

• Aim to find a parameterisation which restores gauge invariance at the linear level for: 
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Restoring diffeomorphism invariance
• Essential observation: going to an arbitrary Einstein space solves all but the trace of 

the Einstein equations. Hence terms in the action 

!
!

 which both breaks diffeomorphism invariance and leads to poles in the propagators 
 are proportional to the trace of the Einstein equations. 

!
• To remove these terms we only need to choose a parameterisation for which the 

cosmological constant is absent from the linearised action e.g. taking the volume 
element itself as a field: 

!
!
           where         is a traceless field. 

• Gauge invariance under: 

!
!
!
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Gauge independent effective action

• One loop effective action in quantum gravity for differentially 
constrained fields: 

!
!
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• with differential operators:
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One-loop beta function
• The first two issues pointed out in the introduction have been resolved by 

restoring diffeomorphism invariance at the semi-classical level. 

• After a suitable normalisation of the cutoff scale one can find a universal 
one loop beta function 

!
!
!
!

• This beta function can be obtained using covariant heat kernel (proper 
time) background independent regularisation.  

• Can also be found by gauge fixing the conformal fluctuations (Percacci, 
Vacca 2015). 

• Using the functional renormalisation group one can obtain the same result 
with a type II cut-off: 
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Beyond one-loop

• Use the functional renormalisation group to compute non-perturbative beta 
function. 

• Single metric truncation is gauge independent. 

!
!
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• Fixed point for positive Newton’s constant in d<8 dimensions 

• Critical exponent: 

!
!

• Involves the integrals
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Critical scaling
• Regulator independence close to two dimensions: 
!
!
!

• Both gauge and regulator independent to second order 

!
!

• Comparison with two loop calculation (Aida and  Kitazawa (1997), hep-th/
9609077)
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Critical scaling
• d=4 dimensions known result from lattice calculation by Hamber 

(2000): 

!
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• Relation to beta function comes from the scaling of the free energy 
!
!
!
!

• Scaling of the free energy can be obtained by integrating the RG 
flow:
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Optimised scaling

• To obtain a best estimate I apply Litim’s optimisation criteria: 

  maximise the gap in the inverse propagator under the regulator scheme 

!
!
• Optimisation aims for better convergence of approximate solutions.   

• Class of optimised regulators:
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Summary

• Restoring diffeomorphism invariance for simple 
approximations: 

• Gauge independence. 
• No poles (from cosmological constant) in 

propagators/beta functions. 
• Real critical exponent in quantitative agreement 

with lattice studies 
• Obtaining universal results is surely dependent on 

approximations and regularisations which respect 
diffeomorphism invariance. 

!
• To do: Vertex expansion/Bi-metric and higher curvature 

invariants. !12


