

EFT of Gravity and Cosmology

Alessandro Codello

Probing the fundamental nature of spacetime with the RG NORDITA, Stockholm 23-27 March 2015

work with: J Joergensen, F Sannino, O Svendsen R Percacci, A Tonero, L Rachwal R K Jain

Outline of the talk

- Effectivity vs Universality
- Example: EFT of Pions (CPT)
- Covariant EFT of Gravity in three lines
- Renormalization in different schemes
- Phenomenological parameters and their estimation
- Adding matter
- LO quantum corrections
- Marginally deformed Starobinsky
- Effective Friedmann equations

Effectivity vs Universality

Two main reasons why mathematical modeling of nature actually works

Effectivity vs Universality

theory space

Massive IR lies in the broken phase (G to G/H)

Characteristic large scale ${\cal M}$ at which ${\rm G}$ is broken

The theory of pions (CPT)

- Low energy QCD can be described by an EFT of pions
- Symmetry braking pattern $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- M is the pion decay constant $F_{\pi} \sim 10^2 \,\mathrm{MeV}$
- Phenomenological parameters l_i to be fixed by experiments (i = 1, 2)
- Renormalization and scale dependence

$$l_i(\mu_1) = l_i(\mu_2) + \frac{\gamma_i}{(4\pi)^2} \log \frac{\mu_1}{\mu_2}$$

• Low energy expansion of physical quantities

$$A(E) = \frac{E^2}{M^2} \left(1 + C_1 l_1 \frac{E^2}{M^2} + C_2 l_2 \frac{E^2}{M^2} \right) + \dots$$

• The theory of small fluctuations of the metric

$$g_{\mu\nu} \to g_{\mu\nu} + \sqrt{16\pi G} h_{\mu\nu} = g_{\mu\nu} + \frac{1}{M} h_{\mu\nu}$$

• Planck's scale is the characteristic scale of gravity

$$M \equiv \frac{1}{\sqrt{16\pi G}} = \frac{M_{Planck}}{\sqrt{16\pi}}$$
$$M_{Planck} = \frac{1}{\sqrt{G}} = 1.2 \times 10^{19} \,\text{GeV}$$

• Classical theory (CT) is successful over many orders of magnitude

$$S_{eff}[g] = \int d^4x \sqrt{g} \left[M^4 c_0 + M^2(-R) + c_{2,1}R^2 + c_{2,2}\text{Ric}^2 + c_{2,3}\text{Riem}^2 + \frac{1}{M^2}c_{3,1}R^3 + \dots \right]$$

$$S_{eff}[g] = \int d^4x \sqrt{g} \left[M^4 \underbrace{c_0}_{\mathcal{R}^0} + M^2 \underbrace{(-R)}_{\mathcal{R}} + \underbrace{c_{2,1}R^2 + c_{2,2}\text{Ric}^2 + c_{2,3}\text{Riem}^2}_{\mathcal{R}^2} + \frac{1}{M^2} \underbrace{c_{3,1}R^3 + \dots}_{\mathcal{R}^3} \right]$$

$$\begin{split} S_{eff}[g] &= \int d^4x \sqrt{g} \left[M^4 \underbrace{c_0}_{\mathcal{R}^0} + M^2 \underbrace{(-R)}_{\mathcal{R}} + \underbrace{c_{2,1}R^2 + c_{2,2}\text{Ric}^2 + c_{2,3}\text{Riem}^2}_{\mathcal{R}^2} + \frac{1}{M^2} \underbrace{c_{3,1}R^3 + \dots}_{\mathcal{R}^3} \right] \\ &\equiv M^2 \left[I_1[g] + \frac{1}{M^2} I_2[g] + \frac{1}{M^4} I_3[g] + \dots \right] \qquad \qquad m^2 = -2\Lambda \end{split}$$

$$e^{-\Gamma[g]} = \int_{1PI} \mathcal{D}h_{\mu\nu} e^{-S_{eff}[g + \frac{1}{M}h]}$$

$$= \int_{1PI} \mathcal{D}h_{\mu\nu} e^{-M^2 \left\{ I_1 [g + \frac{1}{M}h] + \frac{1}{M^2} I_2 [g + \frac{1}{M}h] + \dots \right\}}$$

$$\begin{split} \Gamma[g] &= I_1[g] & \text{CT} \\ &+ \frac{1}{M^2} \left\{ I_2[g] + \frac{1}{2} \text{Tr} \log I_1^{(2)}[g] \right\} & \text{LO} \\ &+ \frac{1}{M^4} \left\{ I_3[g] + \frac{1}{2} \text{Tr} \left[\left(I_1^{(2)}[g] \right)^{-1} I_2^{(2)}[g] \right] + 2 \text{-loops with } I_1[g] \right\} & \text{NLO} \\ &+ \dots & \text{NNLO} \end{split}$$

EFT: saddle point expansion in $\frac{1}{M^2}$

The EFT recipe in three lines

I) the general lagrangian of order E^2 is to be used both at tree level and in loop diagrams

2) the general lagrangian of order $E^{n\geq 4}$ is to be used at tree level and as an insertion in loop diagrams

3) the renormalization program is carried out order by order

What do we already know?

UV divergencies and renormalization

G. 't Hooft and M. J. G. Veltman, Annales Poincare Phys. Theor. A 20 (1974) 69

G. W. Gibbons, S. W. Hawking and M. J. Perry, Nucl. Phys. B 138 (1978) 141

S. M. Christensen and M. J. Duff, Nucl. Phys. B 170 (1980)

What do we already know?

Two loops UV divergencies

M.H. Goroff and A. Sagnotti, Nucl.Phys.B266, 709 (1986) A. E. M. van de Ven, Nucl. Phys. B378, 309 (1992)

What do we already know?

Finite LO terms

Leading logs J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994) A. C., J. Joergensen, F. Sannino and O. Svendsen, JHEP 1502 (2015) 050 **Conformal anomaly** S. Deser, M. J. Duff and C. J. Isham, Nucl. Phys. B 111, 45 (1976) R.J. Riegert, Phys. Lett. B 134 (1984) 56 Four graviton vertex in Minkowski space

D. C. Dunbar and P. S. Norridge, Nucl. Phys. B 433, 181 (1995)

Curvature square terms

A. C. and R. K. Jain, in preparation

NNLO

LOQG: the only QG we will ever observe!

Even if we have a fundamental theory its is generally difficult to compute phenomenological parameters...

Renormalization

Cutoff regularization

$$\begin{split} m^2 &= -2\Lambda \\ \bullet &= \frac{1}{2} \frac{1}{(4\pi)^2} \int d^4 x \sqrt{g} \left[\Lambda_{UV}^4 - 10\Lambda_{UV}^2 m^2 + 5m^4 \log \frac{\Lambda_{UV}^2}{m^2} \\ &+ \left(-\frac{23}{3}\Lambda_{UV}^2 + \frac{13}{3}m^2 \log \frac{\Lambda_{UV}^2}{m^2} \right) R \\ &+ \left(\frac{7}{20}C^2 + \frac{1}{4}R^2 + \frac{149}{180}E - \frac{19}{15} \Box R \right) \log \frac{\Lambda_{UV}^2}{m^2} \right] \begin{array}{c} \text{measured} \\ \text{+ phenomenological} \\ \text{parameters} \end{split}$$

Renormalization

Cutoff regularization

$$\begin{split} \mathbf{m}^2 &= -2\Lambda \\ \bullet &= \frac{1}{2} \frac{1}{(4\pi)^2} \int d^4 x \sqrt{g} \left[\Lambda_{UV}^4 - 10\Lambda_{UV}^2 m^2 + 5m^4 \log \frac{\Lambda_{UV}^2}{m^2} \\ &+ \left(-\frac{23}{3}\Lambda_{UV}^2 + \frac{13}{3}m^2 \log \frac{\Lambda_{UV}^2}{m^2} \right) R \\ &+ \left(\frac{7}{20}C^2 + \frac{1}{4}R^2 + \frac{149}{180}E - \frac{19}{15}\Box R \right) \log \frac{\Lambda_{UV}^2}{m^2} \right] \begin{array}{c} \mathrm{measured} \\ \mathrm{+ phenomenological} \\ \mathrm{parameters} \end{split}$$

Dimensional regularization

$$\log \Lambda_{UV}^2 \to \frac{1}{\epsilon} \qquad \qquad \Lambda_{UV}^2 \to 0 \qquad \qquad \Lambda_{UV}^4 \to 0$$

Renormalization

Cutoff regularization

$$\begin{split} \mathbf{m}^2 &= -2\Lambda \\ \bullet &= \frac{1}{2} \frac{1}{(4\pi)^2} \int d^4 x \sqrt{g} \left[\Lambda_{UV}^4 - 10\Lambda_{UV}^2 m^2 + 5m^4 \log \frac{\Lambda_{UV}^2}{m^2} \\ &+ \left(-\frac{23}{3}\Lambda_{UV}^2 + \frac{13}{3}m^2 \log \frac{\Lambda_{UV}^2}{m^2} \right) R \\ &+ \left(\frac{7}{20}C^2 + \frac{1}{4}R^2 + \frac{149}{180}E - \frac{19}{15}\Box R \right) \log \frac{\Lambda_{UV}^2}{m^2} \right] \begin{array}{c} \mathrm{measured} \\ \mathrm{+ phenomenological} \\ \mathrm{parameters} \end{array}$$

- -

Dimensional regularization

$$\log \Lambda_{UV}^2 \to \frac{1}{\epsilon} \qquad \qquad \Lambda_{UV}^2 \to 0 \qquad \qquad \Lambda_{UV}^4 \to 0$$

G runs if there is a mass scale involved also in dimensional regularization [Kirill's talk]

$$c_i(\mu_1) = c_i(\mu_2) + \frac{\gamma_i}{(4\pi)^2} \log \frac{\mu_1}{\mu_2} \qquad \mu \partial_\mu c_i = \frac{\gamma_i}{(4\pi)^2}$$

Phenomenological parameters

$$G = 6.67428 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$$

Cavendish 1797 (1% off best value!)

Phenomenological parameters

 $\Lambda = 10^{-47} \, \mathrm{GeV}^4$

Supernova Cosmology Project

Phenomenological parameters

 $\xi \equiv c_{R^2}$ $\xi(k_*) \sim 10^9$ $k_* \equiv 0.05 \,\mathrm{Mpc}^{-1} \sim 10^{-40} \mathrm{GeV}$

Planck mission [Alfio's talk]

UV divergencies and renormalization with matter

Scalars

A. O. Barvinsky, A. Y. .Kamenshchik and I. P. Karmazin, Phys. Rev. D 48 (1993) 3677

... Gauge

S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006)

Yukawa

•••

A. Rodigast and T. Schuster, Phys. Rev. Lett. 104, 081301 (2010)

...

Finite LO terms with matter

Flat space corrections to Newton's potential

J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein (2003b) Phys. Rev. D 67I.B. Khriplovich, G.G. Kirilin (2004) J. Exp. Theor. Phys. 98, 1063-1072

Covariant leading logs

A C, R Percacci, L Rachwal and A Tonero in preparation

CT

LO

Matter induced effective action

$$\frac{1}{2} \bigcirc = -\frac{1}{2} \frac{1}{(4\pi)^2} \sum_{n=\frac{d}{2}+1} \frac{1}{m^{2n-d}} B_{2n}$$

Local heat kernel coefficients

B6

Gilkey, PB A. O. Barvinsky and G. A. Vilkovisky, Phys. Rept. 119 (1985) 1. I. G. Avramidi, Lect. Notes Phys. M 64 (2000) 1. Groh, Kai Saueressig, Frank Zanusso, Omar

B8

Amsterdamski, P Ven, AEM Van de

Matter induced effective action: expandable in inverse powers of the (lightest) particle masse

$$\frac{1}{2} \bigcirc = -\frac{1}{2} \frac{1}{(4\pi)^2} \frac{1}{m^2} B_6 + \dots$$

As in QED when we integrate out electrons

$$\frac{1}{2} \bigcirc = -\frac{1}{2} \frac{1}{(4\pi)^2} \frac{1}{m^2} \int d^4 x \sqrt{g} \left[\frac{1}{336} R \Box R + \frac{1}{840} R_{\mu\nu} \Box R^{\mu\nu} + \frac{1}{1296} R^3 - \frac{1}{1080} R R_{\mu\nu} R^{\mu\nu} - \frac{4}{2835} R^{\nu}_{\mu} R^{\alpha}_{\nu} R^{\mu}_{\alpha} + \frac{1}{945} R_{\mu\nu} R_{\alpha\beta} R^{\mu\alpha\nu\beta} + \frac{1}{1080} R R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} + \frac{1}{7560} R_{\mu\nu} R^{\mu\alpha\beta\gamma} R^{\nu}_{\alpha\beta\gamma} + \frac{17}{45360} R_{\mu\nu}^{\alpha\beta} R^{\gamma\delta}_{\alpha\beta} R^{\mu\nu}_{\gamma\delta} - \frac{1}{1620} R^{\alpha\beta}_{\mu\nu} R^{\mu\nu}_{\gamma\delta} R^{\gamma\delta}_{\alpha\beta} \right] + \dots$$

Changes how cubic terms are suppressed:

$$\frac{1}{M^4} \to \frac{1}{m^2 M^2}$$

$$\frac{1}{2} \bigcirc = -\frac{1}{2} \frac{1}{(4\pi)^2} \frac{1}{m^2} \int d^4 x \sqrt{g} \left[\frac{1}{336} R \Box R + \frac{1}{840} R_{\mu\nu} \Box R^{\mu\nu} + \frac{1}{1296} R^3 - \frac{1}{1080} R R_{\mu\nu} R^{\mu\nu} - \frac{4}{2835} R^{\nu}_{\mu} R^{\alpha}_{\nu} R^{\mu}_{\alpha} + \frac{1}{945} R_{\mu\nu} R_{\alpha\beta} R^{\mu\alpha\nu\beta} + \frac{1}{1080} R R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} + \frac{1}{7560} R_{\mu\nu} R^{\mu\alpha\beta\gamma} R^{\nu}_{\alpha\beta\gamma} + \frac{17}{45360} R^{\alpha\beta}_{\mu\nu} R^{\gamma\delta}_{\alpha\beta} R^{\mu\nu}_{\gamma\delta} - \frac{1}{1620} R^{\alpha\beta}_{\mu\nu} R^{\mu\nu}_{\gamma\delta} R^{\gamma\delta}_{\alpha\beta} \right] + \dots$$

The same can be applied to O and with some modifications to O and thus find •

$$\frac{i\kappa}{2} \left(P_{\alpha\beta,\gamma\delta} \left[k^{\mu}k^{\nu} + (k-q)^{\mu}(k-q)^{\nu} + q^{\mu}q^{\nu} - \frac{3}{2}\eta^{\mu\nu}q^{2} \right] \\
+ 2q_{\lambda}q_{\sigma} \left[I^{\lambda\sigma}_{\ \alpha\beta}I^{\mu\nu}_{\ \gamma\delta} + I^{\lambda\sigma}_{\ \gamma\delta}I^{\mu\nu}_{\ \alpha\beta} - I^{\lambda\mu}_{\ \alpha\beta}I^{\sigma\nu}_{\ \gamma\delta} - I^{\sigma\nu}_{\ \alpha\beta}I^{\lambda\mu}_{\ \gamma\delta} \right] \\
+ \left[q_{\lambda}q^{\mu} \left(\eta_{\alpha\beta}I^{\lambda\nu}_{\ \gamma\delta} + \eta_{\gamma\delta}I^{\lambda\nu}_{\ \alpha\beta} \right) + q_{\lambda}q^{\nu} \left(\eta_{\alpha\beta}I^{\lambda}_{\ \gamma\delta} + \eta_{\gamma\delta}I^{\lambda\mu}_{\ \alpha\beta} \right) \right] \\
- q^{2} \left(\eta_{\alpha\beta}I^{\mu\nu}_{\ \gamma\delta} + \eta_{\gamma\delta}I^{\mu\nu}_{\ \alpha\beta} \right) - \eta^{\mu\nu}q^{\lambda}q^{\sigma} \left(\eta_{\alpha\beta}I_{\gamma\delta,\lambda\sigma} + \eta_{\gamma\delta}I_{\alpha\beta,\lambda\sigma} \right) \\
+ \left[2q^{\lambda} \left(I^{\sigma\nu}_{\ \alpha\beta}I_{\gamma\delta,\lambda\sigma}(k-q)^{\mu} + I^{\sigma\mu}_{\ \alpha\beta}I_{\gamma\delta,\lambda\sigma}(k-q)^{\nu} - I^{\sigma\nu}_{\ \gamma\delta}I_{\alpha\beta,\lambda\sigma}k^{\mu} - I^{\sigma\mu}_{\ \gamma\delta}I_{\alpha\beta,\lambda\sigma}k^{\mu} \right) \right] \\
+ q^{2} \left(I^{\sigma\mu}_{\ \alpha\beta}I_{\gamma\delta,\sigma}^{\ \nu} + I_{\alpha\beta,\sigma}^{\ \nu}I^{\sigma\mu}_{\ \alpha\delta} \right) + \eta^{\mu\nu}q^{\lambda}q_{\sigma} \left(I_{\alpha\beta,\lambda\rho}I^{\rho\sigma}_{\ \gamma\delta} + I_{\gamma\delta,\lambda\rho}I^{\rho\sigma}_{\ \alpha\beta} \right) \\
+ \left\{ \left(k^{2} + (k-q)^{2} \right) \left(I^{\sigma\mu}_{\ \alpha\beta}I_{\gamma\delta,\sigma}^{\ \nu} + I^{\sigma\nu}_{\ \alpha\beta}I_{\gamma\delta,\sigma}^{\ \mu} - \frac{1}{2}\eta^{\mu\nu}P_{\alpha\beta,\gamma\delta} \right) \right\} \right\}$$

the truth behind Feynman diagrams...

$$V = -\frac{GMm}{r} \left[1 + a \frac{G(M+m)}{c^2 r} + b \frac{G\hbar}{c^3 r^2} + \cdots \right]$$

$$V = -\frac{GMm}{r} \left[1 + a \frac{G(M+m)}{c^2 r} + b \frac{G\hbar}{c^3 r^2} + \cdots \right]$$

$$[G] = \frac{\mathrm{m}^3}{\mathrm{Kg}\,\mathrm{s}^2} \qquad [\hbar] = \frac{\mathrm{m}^2\,\mathrm{Kg}}{\mathrm{s}} \qquad [c] = \frac{\mathrm{m}}{\mathrm{s}}$$

$$V = -\frac{GMm}{r} \left[1 + 3\frac{G(M+m)}{c^2 r} + \frac{41}{10\pi} \frac{G\hbar}{c^3 r^2} + \cdots \right]$$

Leading quantum corrections to Newton's potential

J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994)

Leading quantum corrections to Newton's law are incredibly small!

Can we ever observe quantum gravity effects?

Maybe there are some inside here...

Non-analytical vs non-local

•
$$+\frac{1}{2} = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R \left[\alpha \log \frac{R}{\mu^2} + \beta \log \frac{-\Box}{\mu^2} \right] R + \dots$$

Non-analytical vs non-local

•
$$+\frac{1}{2} \bigcirc = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R \left[\alpha \log \frac{R}{\mu^2} + \beta \log \frac{-\Box}{\mu^2} \right] R + \dots$$

Obtain finite part from beta functions (physical running)

$$2R\,\partial_R = -\mu\,\partial_\mu \qquad \qquad 2q^2\,\partial_{q^2} = -\mu\,\partial_\mu$$

Non-analytical vs non-local

•
$$+\frac{1}{2} \bigcirc = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R \left[\alpha \log \frac{R}{\mu^2} + \beta \log \frac{-\Box}{\mu^2} \right] R + \dots$$

Obtain finite part from beta functions (physical running)

$$2R\,\partial_R = -\mu\,\partial_\mu \qquad \qquad 2q^2\,\partial_{q^2} = -\mu\,\partial_\mu$$

As in QED

Non-analytical vs non-local

•
$$+\frac{1}{2} = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R \left[\alpha \log \frac{R}{\mu^2} + \beta \log \frac{-\Box}{\mu^2} \right] R + \dots$$

Obtain finite part from beta functions (physical running)

$$2R\,\partial_R = -\mu\,\partial_\mu \qquad \qquad 2q^2\,\partial_{q^2} = -\mu\,\partial_\mu$$

$$\alpha = \beta$$
 α

 $\alpha = \frac{C}{4(4\pi)^2}$

A topology must be chosen...

$$C = \frac{N_S}{72}$$
 minimally coupled scalars

$$C = \frac{1}{4}$$
 EFT gravity

$$C = \frac{5}{36}$$
 HDG

Marginally deformed Starobinsky

•
$$+\frac{1}{2} \bigcirc = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R h\left(\frac{R}{\mu^2}\right) R + \dots$$

Marginally deformed Starobinsky

•
$$+\frac{1}{2} \bigcirc = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R h\left(\frac{R}{\mu^2}\right) R + \dots$$

One loop flow equation

$$R \,\partial_R h = -\frac{C}{2(4\pi)^2}$$

$$h(R/\mu^2) = \log R/\mu^2$$

Marginally deformed Starobinsky

•
$$+\frac{1}{2} = -\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} R h\left(\frac{R}{\mu^2}\right) R + \dots$$

One loop flow equation

$$R \partial_R h = -\frac{C}{2(4\pi)^2} \qquad \qquad h(R/\mu^2) = \log R/\mu^2$$

RG improved flow equation

$$R \partial_R h = -\frac{C}{2(4\pi)^2} h \qquad \qquad h(R) = h(R_0) \left(\frac{R}{R_0}\right)^{-\frac{C}{2(4\pi)^2}}$$

$$C > 0 \qquad \qquad \alpha = \frac{C}{4(4\pi)^2} \qquad \qquad \alpha > 0$$

Marginally deformed Starobinsky (L)

Leading quantum corrections to tensor-to-scalar ratio A. C, J. Joergensen, F. Sannino and O. Svendsen, JHEP 1502, 050 (2015)

• +
$$\frac{1}{2}$$
 \bigcirc = $-\frac{1}{2(4\pi)^{d/2}}\int d^d x \sqrt{g} \operatorname{tr} \mathcal{R} \gamma_i \left(\frac{-\Box}{m^2}\right) \mathcal{R} + \dots$

The finite physical part of the effective action is covariantly encoded in the structure functions which can be computed using the non-local heat kernel expansion

$$\gamma_i \left(\frac{X}{m^2}\right) \equiv \lim_{\Lambda_{UV} \to \infty} \int_{1/\Lambda_{UV}^2}^{\infty} \frac{ds}{s} s^{-d/2+2} \left[f_i(sX) - f_i(0)\right]$$

Non-local heat kernel

A. O. Barvinsky and G. A. Vilkovisky, Nucl. Phys. B 282 (1987) 163I. G. Avramidi, Lect. Notes Phys. M 64 (2000) 1A. Codello and O. Zanusso, J. Math. Phys. 54 (2013) 013513

Non-local heat kernel structure functions

• +
$$\frac{1}{2}$$
 \bigcirc = $-\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} \operatorname{tr} \left[\mathbf{1} R_{\mu\nu} \gamma_{Ric} \left(\frac{-\Box}{m^2} \right) R^{\mu\nu} + \frac{1}{120} R \gamma_R \left(\frac{-\Box}{m^2} \right) R - \frac{1}{6} R \gamma_{RU} \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{2} \mathbf{U} \gamma_U \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{12} \mathbf{\Omega}_{\mu\nu} \gamma_\Omega \left(\frac{-\Box}{m^2} \right) \mathbf{\Omega}^{\mu\nu} \right]$

Explicit form for the structure functions

$$\begin{split} \gamma_{Ric}(u) &= \frac{1}{40} + \frac{1}{12u} - \frac{1}{2} \int_{0}^{1} d\xi \left[\frac{1}{u} + \xi(1-\xi) \right]^{2} \log\left[1 + u \,\xi(1-\xi) \right] \\ \gamma_{R}(u) &= -\frac{23}{960} - \frac{1}{96u} + \frac{1}{32} \int_{0}^{1} d\xi \left\{ \frac{2}{u^{2}} + \frac{4}{u} \left[1 + \xi(1-\xi) \right] \right. \\ &\left. - 1 + 2\xi(2-\xi)(1-\xi^{2}) \right\} \log\left[1 + u \,\xi(1-\xi) \right] \\ \gamma_{RU}(u) &= \frac{1}{12} - \frac{1}{2} \int_{0}^{1} d\xi \left[\frac{1}{u} - \frac{1}{2} + \xi(1-\xi) \right] \log\left[1 + u \,\xi(1-\xi) \right] \\ \gamma_{U}(u) &= -\frac{1}{2} \int_{0}^{1} d\xi \log\left[1 + u \,\xi(1-\xi) \right] \\ \gamma_{\Omega}(u) &= \frac{1}{12} - \frac{1}{2} \int_{0}^{1} d\xi \left[\frac{1}{u} + \xi(1-\xi) \right] \log\left[1 + u \,\xi(1-\xi) \right] \end{split}$$

 $u \equiv \frac{-\Box}{m^2}$

• +
$$\frac{1}{2}$$
 \bigcirc = $-\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} \operatorname{tr} \left[\mathbf{1} R_{\mu\nu} \gamma_{Ric} \left(\frac{-\Box}{m^2} \right) R^{\mu\nu} + \frac{1}{120} R \gamma_R \left(\frac{-\Box}{m^2} \right) R - \frac{1}{6} R \gamma_{RU} \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{2} \mathbf{U} \gamma_U \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{12} \mathbf{\Omega}_{\mu\nu} \gamma_\Omega \left(\frac{-\Box}{m^2} \right) \mathbf{\Omega}^{\mu\nu} \right]$

Large energy expansion $u \gg 1$

$$\gamma_{Ric}(u) = -\frac{u}{840} + \frac{u^2}{15120} - \frac{u^3}{166320} + O(u^4)$$

$$\gamma_R(u) = -\frac{u}{336} + \frac{11u^2}{30240} - \frac{19u^3}{332640} + O(u^4)$$

$$\gamma_{RU}(u) = \frac{u}{30} - \frac{u^2}{280} + \frac{u^3}{1890} + O(u^4)$$

$$\gamma_U(u) = -\frac{u}{12} + \frac{u^2}{120} - \frac{u^3}{840} + O(u^4)$$

$$\gamma_\Omega(u) = -\frac{u}{120} + \frac{u^2}{1680} - \frac{u^3}{15120} + O(u^4)$$

 $u \equiv \frac{-\square}{m^2}$

• +
$$\frac{1}{2}$$
 \bigcirc = $-\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} \operatorname{tr} \left[\mathbf{1} R_{\mu\nu} \gamma_{Ric} \left(\frac{-\Box}{m^2} \right) R^{\mu\nu} + \frac{1}{120} R \gamma_R \left(\frac{-\Box}{m^2} \right) R - \frac{1}{6} R \gamma_{RU} \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{2} \mathbf{U} \gamma_U \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{12} \mathbf{\Omega}_{\mu\nu} \gamma_\Omega \left(\frac{-\Box}{m^2} \right) \mathbf{\Omega}^{\mu\nu} \right]$

Large energy expansion $u \gg 1$

match with local heat kernel

$$\gamma_{Ric}(u) = -\frac{u}{840} + \frac{u^2}{15120} - \frac{u^3}{166320} + O(u^4)$$

$$\gamma_R(u) = -\frac{u}{336} + \frac{11u^2}{30240} - \frac{19u^3}{332640} + O(u^4)$$

$$\gamma_{RU}(u) = \frac{u}{30} - \frac{u^2}{280} + \frac{u^3}{1890} + O(u^4)$$

$$\gamma_U(u) = -\frac{u}{12} + \frac{u^2}{120} - \frac{u^3}{840} + O(u^4)$$

$$\gamma_{\Omega}(u) = -\frac{u}{120} + \frac{u^2}{1680} - \frac{u^3}{15120} + O(u^4)$$

 $u \equiv \frac{-\square}{m^2}$

• +
$$\frac{1}{2}$$
 \bigcirc = $-\frac{1}{2(4\pi)^2} \int d^4x \sqrt{g} \operatorname{tr} \left[\mathbf{1} R_{\mu\nu} \gamma_{Ric} \left(\frac{-\Box}{m^2} \right) R^{\mu\nu} + \frac{1}{120} R \gamma_R \left(\frac{-\Box}{m^2} \right) R - \frac{1}{6} R \gamma_{RU} \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{2} \mathbf{U} \gamma_U \left(\frac{-\Box}{m^2} \right) \mathbf{U} + \frac{1}{12} \mathbf{\Omega}_{\mu\nu} \gamma_\Omega \left(\frac{-\Box}{m^2} \right) \mathbf{\Omega}^{\mu\nu} \right]$

Low energy expansion $u \ll 1$

$$\begin{split} \gamma_{Ric}(u) &= \frac{23}{450} - \frac{1}{60}\log u + \frac{5}{18u} - \frac{\log u}{6u} + \frac{1}{4u^2} - \frac{\log u}{2u^2} + O\left(\frac{1}{u^3}\right) \\ \gamma_R(u) &= \frac{1}{1800} - \frac{1}{120}\log u - \frac{2}{9u} + \frac{\log u}{12u} + \frac{1}{8u^2} + \frac{\log u}{4u^2} + O\left(\frac{1}{u^3}\right) \\ \gamma_{RU}(u) &= -\frac{5}{18} + \frac{1}{6}\log u + \frac{1}{u} - \frac{1}{2u^2} - \frac{\log u}{u^2} + O\left(\frac{1}{u^3}\right) \\ \gamma_U(u) &= 1 - \frac{1}{2}\log u - \frac{1}{u} - \frac{\log u}{u} - \frac{1}{2u^2} + \frac{\log u}{u^2} + O\left(\frac{1}{u^3}\right) \\ \gamma_\Omega(u) &= \frac{2}{9} - \frac{1}{12}\log u + \frac{1}{2u} - \frac{\log u}{2u} - \frac{3}{4u^2} - \frac{\log u}{2u^2} + O\left(\frac{1}{u^3}\right) \end{split}$$

 $u \equiv \frac{-\square}{m^2}$

Cosmological effective action (L)

$$\Gamma[g] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda\right) + \xi \int d^4x \sqrt{-g} R^2 + \int d^4x \sqrt{-g} RF(\Box)R$$

Cosmological effective action (L)

$$\Gamma[g] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda\right) + \xi \int d^4x \sqrt{-g} R^2 + \int d^4x \sqrt{-g} RF(\Box)R$$

$$F(\Box) = \alpha \log \frac{-\Box}{m^2}$$

$$lpha,\,eta,\,\gamma,\,\delta$$

are calculable constants
depending on matter
content

$$+ \, \gamma \frac{m^2}{-\Box} \log \frac{-\Box}{m^2}$$

 $+\delta \frac{m^4}{(-\Box)^2}$

$$+ \dots$$

Cosmological effective action (L)

$$\Gamma[g] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda\right) + \xi \int d^4x \sqrt{-g} R^2 + \int d^4x \sqrt{-g} RF(\Box)R$$

$$F(\Box) = \alpha \log \frac{-\Box}{m^2}$$

Leading logs J. F. Donoghue and B. K. El-Menoufi, Phys. Rev. D 89, 104062 (2014)

$$lpha,\,eta,\,\gamma,\,\delta$$

are calculable constants depending on matter content

Non-local gravity and dark energy M. Maggiore and M. Mancarella, Phys. Rev. D 90, 023005 (2014).

$$+ \dots$$

 $+\delta \frac{m^4}{(-\Box)^2}$

Effective non-local cosmology A. C. and K. J. Jain in preparation

Local gravity @ LO

$$H^{2} + 96\pi\xi G \left[2H\ddot{H} + 6H^{2}\dot{H} - \dot{H}^{2} \right] = \frac{1}{3}\Lambda + \frac{8\pi G}{3}\rho$$

Local gravity @ LO

$$H^{2} + 96\pi\xi G \left[2H\ddot{H} + 6H^{2}\dot{H} - \dot{H}^{2} \right] = \frac{1}{3}\Lambda + \frac{8\pi G}{3}\rho$$

Pure Starobinsky gravity is exactly solvable

 $2H\ddot{H} + 6H^2\dot{H} - \dot{H}^2 = 0$

H = 0

$$t + C_2 = \int \frac{dH}{C_1 \sqrt{H} - 2H^2}$$
$$H = \frac{1}{2t}$$

Local gravity @ LO

$$H^{2} + 96\pi\xi G \left[2H\ddot{H} + 6H^{2}\dot{H} - \dot{H}^{2} \right] = \frac{1}{3}\Lambda + \frac{8\pi G}{3}\rho$$

Pure Starobinsky gravity is exactly solvable

 $2H\ddot{H} + 6H^2\dot{H} - \dot{H}^2 = 0$

H = 0

$$t + C_2 = \int \frac{dH}{C_1 \sqrt{H} - 2H^2}$$
$$H = \frac{1}{2t}$$

$$R + R^{n-1}\delta R = -8\pi G T$$
$$T = 0 \qquad \Rightarrow \qquad R = 0$$

$$H^{2}(t) + 16\pi G\alpha \left\{ -\left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}}\right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t')\right] \right\} = \frac{8\pi G}{3}\rho(t)$$

How to interpret non-local terms?

$$\begin{aligned} & H^{2}(t) + 16\pi G\alpha \left\{ - \left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}} \right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') \\ & + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t') \right] \right\} = \frac{8\pi G}{3}\rho(t) \\ & \text{How to interpret non-local terms!} \\ & L \equiv \log \frac{-\Box}{\mu^{2}} \\ & L(t-t') = \int_{0}^{\infty} ds \left[\frac{1}{\mu^{2}+s} - G(t-t';\sqrt{s}) \right] \\ & \int_{0}^{0} G_{-}(t-t';m) = \frac{\theta(t-t')}{\sqrt{a^{3}(t)a^{3}(t')}} \frac{\sin m(t-t')}{m} + O(\dot{a}) \\ & L_{-}(t-t') = -2 \lim_{\epsilon \to 0} \left[\frac{\theta(t-t'-\epsilon)}{t-t'} + \delta(t-t') \log \mu \, \epsilon \right] \end{aligned}$$

$$H^{2}(t) + 16\pi G\alpha \left\{ -\left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}}\right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t')\right] \right\} = \frac{8\pi G}{3}\rho(t)$$

Try an iterative solution...

$$a(t) = a_0 e^{\sqrt{\frac{\Lambda}{3}}t}$$

 $a(t) = (t/t_0)^{1/2}$
 $a(t) = (t/t_0)^{2/3}$

$$H^{2}(t) + 16\pi G\alpha \left\{ -\left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}}\right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t')\right] \right\} = \frac{8\pi G}{3}\rho(t)$$

Try an iterative solution...

 $a(t) = a_0 e^{\sqrt{\frac{\Lambda}{3}}t}$ no effect $a(t) = (t/t_0)^{1/2}$ $a(t) = (t/t_0)^{2/3}$

$$H^{2}(t) + 16\pi G\alpha \left\{ -\left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}}\right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t')\right] \right\} = \frac{8\pi G}{3}\rho(t)$$

Try an iterative solution...

 $a(t) = a_0 e^{\sqrt{\frac{\Lambda}{3}}t}$ no effect $a(t) = (t/t_0)^{1/2}$ no effect $a(t) = (t/t_0)^{2/3}$

$$H^{2}(t) + 16\pi G\alpha \left\{ -\left[\frac{\ddot{a}(t)}{a^{2}(t)\sqrt{a(t)}} + 2\frac{H^{2}(t)}{a(t)\sqrt{a(t)}}\right] \int dt' \, a^{\frac{3}{2}}(t')R(t') \, L_{-}(t-t') + 2\frac{H(t)}{a(t)\sqrt{a(t)}} \int dt' \, L_{-}(t-t') \, \frac{d}{dt'} \left[a^{\frac{3}{2}}(t')R(t')\right] \right\} = \frac{8\pi G}{3}\rho(t)$$

Try an iterative solution...

$$a(t) = a_0 e^{\sqrt{\frac{\Lambda}{3}}t}$$
 no effect
 $a(t) = (t/t_0)^{1/2}$ no effect
 $a(t) = (t/t_0)^{2/3}$ some effect

$$H^{2}(t) + \frac{256\pi G\alpha}{3t^{4}} \left[\log \mu t + \log \left(\frac{t}{t_{0}} - 1\right) + \frac{2}{3} \left(\frac{t}{t_{0}} - 1\right) \right] = \frac{8\pi G}{3} \rho_{m}(t_{0}) \left(\frac{t_{0}}{t}\right)^{2}$$

... log R dominant a early times while log box at late times

Conclusions and Outlook

- Compute all LO terms
- Renormalization of NLO
- Conformal anomaly contribution
- Apply to cosmology
- Apply to stars/black holes
- Add the SM and constrain BSM
- Connection with high energy quantum gravity
- Falsify!

Thank you