

On the role of the Ionosphere for the Atmospheric Evolution of Planets – insights from Titan J-E. Wahlund, M. Yamauchi P. Garnier, R. Modolo, M. Morooka, L. Rosenkvist, K. Ågrén V. Vuitton, R. Yelle M. Galand, I. Müller-Wodarg T. Cravens, I. Robertson, H. Waite A. Coates D. Gurnett, W. S. Kurth

- Brief overview of understanding
 - Ionospheric & Exospheric escape mechanisms
- Escape of plasma from the dense & expanded ionosphere of Titan
 - Interaction with a dynamic magnetospheric environment
- Titan's Ionosphere is a factory for pre-biotic building blocks
 - Heavy ions (>100 amu) dominate lower ionosphere
 - Negative ions & Aerosol formation

NORDITA, Stockholm, January 11, 2008

Snace Physics Snace Physics Snace Physics Snace Physics

Steele Hill/NASA

Brief Overview of Understanding

- Jeans escape
 - Thermal tail exceeds escape speed
 - Thermal, affects mostly light neutrals (H, He)
- Hydrodynamic blow-off
 - Extreme EUV condition at early Sun/star
 - Thermal
- Photochemical heating
 - Release of energy in excited states
 - Chemical, light neutrals
- Ion pick-up (subsequent sputtering)
 - Exposed ions in the SW is subject to SW \mathbf{E}_{DC}
 - Non-thermal, favours light ions
- Non-thermal ion energization by \mathbf{E}_{\parallel} & plasma waves
 - Local deposit of SW energy to ionosphere cause an electrodynamic coupling that accelerates ions
 - Both heavy and light ions
- Large scale momentum transfer
 - SW p_{dynamic} & EM forces "push" bulk plasma anti-sunward at boundary region
 - Non-thermal, both heavy & light ions

Non-thermal Escape

• Escape rates at Solar Maximum (15000-60000 ton/yr)

Dependence on Solar Activity ($F_{10.7}$)

- Solar activity Max/Min ~ 3
- Earth:
 - O^+ outflow ~ 100 variability
 - H⁺ outflow ~ 3 variability
 - Large contribution to O/H-ratio
 - Large O/H at early Earth?

- Venus:
 - Factor 20 change in ionotail density
- Mars:
 - A factor 100 difference between MEX & Phobos-2

Dependence on Geomagnetic Activity

- Strongly on K_p , SW $p_{dynamic}$, and IMF

- SW stopped by the magnetic pressure of the planetary **B**_{Dipole}
- Interplanetary magnetic field (IMF) enhanced around ionosphere due to induction currents (magnetic pile-up)

Strong magnetic field between ionosphere & (shocked) SW

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

- Solar cycle variation of ionopause altitude
- Venus (& Mars):
 - 1700 km difference [Zhang et al., 2007]
- Extended exosphere/atmosphere => Higher ionization rate (by EUV/energetic particles) => Ionization of otherwise escaping neutrals => trapped by magnetized ionopause/magnetopause =>
- Reduction of Jeans escape (mostly H, He)
- Higher ionopause => less neutrals beyond => Reduction of ion pick-up

=>

- Expect:
 - 1. Strong & stable IMF \Rightarrow
 - 2. Variable IMF
 - 3. Strong SW p_{dynamic}

- No change
- Lower pressure balance altitude (cancel B)
- => Lower pressure balance altitude

Exra ionization (hot case)

Critical Ionization Velocity (CIV)

Early Earth Ionosphere

- Most likely high EUV/FUV
- Most likely high SW p_{dynamic}
- Probably strong/active IMF
- ⇒Larger O escape & larger O/H-ratio escape then present
- \Rightarrow The Early Atmosphere could have been chemically reduced

Many unclear parameters!

- Magnetized/Non-magnetized
- Atmospheric composition
- Internal conditions

Dense & Expanded Ionosphere of Titan

Cassini RPWS LP Mätningar av plasma

- Langmuirsond (LP)
- "Väderstation" för elektriskt laddad gas
 - Mycket noggrann Ampere-meter
 - Några pA känslighet
 - Densitet
 - Temperaturer
 - Hastighet
 - Rymdfarkostladdning
 - Sammansättning (grov)

Langmuir Probe theory (brief)

 $I = I_i + I_e + I_{ph,Lv-\alpha} + I_{e^*,i^*} + I_{dust}$ LP measures currents: From OML theory (with Maxwellian distribution function, Fahlesson approximation): U > 0 U < 0 $I_e = I_{e0} (1 - \chi_e)$ $I_e = I_{e0} \exp(-\chi_e) <<$ $I_i = I_{i0} \exp(-\chi_i) <<$ $I_i = I_{i0} \left(1 - \chi_i \right)$ with Cassini LP 2006.02.27 08:10:0.566 UT $I_{i0} = A_{LP} n_i q_i \sqrt{\frac{v_i^2}{16} + \frac{k_B T_i}{2\pi m_i}} \int_{\frac{4}{3}}^{\frac{5}{5}} \text{linear} \qquad U<0$ $I_{e0} = A_{LP} n_e q_e \sqrt{\frac{k_B T_e}{2\pi m_e}}$ U>0 $\chi_e = \frac{e(U_{bias} + U_{sc})}{k_- T}$ $\chi_i = \frac{e(U_{bias} + U_{SC})}{\frac{m_i v_i^2}{2} + k_B T_i}$ logarithmic [**V**] eqoud + Ly- α intensity fr. I_{ph} -1010 20 30 -20 [V] Printed: 07-Eeb-2007.09:31

n_e-Estimation from the LP

- LP well designed for dense/cold plasma
- S/C photo-e⁻ contaminate for low densities
- $\underline{\mathbf{n}}_{\underline{\mathbf{e}}} \leq 5 \text{ cm}^{-3}$
- U_{float} derived from sweep analysis
- N_e deduced from ELS-LP empirical relationship (proxy)

- $\underline{n}_{\underline{e}} \ge 5 \text{ cm}^{-3}$
- Assume we have at least two e⁻ populations (photo-e⁻, ambient)
- Can be identified in dI/dU

Voyager-1 (1981)

- Thick Atmosphere
 - 1.5 bar
 - N₂ 82-98%
 - CH₄ 2-8%
 - Ar few %?
- Thick Organic Haze

Saturn's Magnetosphere

Ionosphere of Titan Max $n_e = 3800 \text{ cm}^{-3}$

Escape Flux (Cyl.) $\int n_e v_i \sim few \times 10^{25}$ ions/s $\approx 1-2 \text{ kg/s}$

Wahlund et al., *Science*, 2005

Ionospheric Plasma Escape from Titan (T9) [Modolo et al., GRL, 2007a & b]

- Differential outflow processes
 - Light ions
 - Magn. ionization side
 - charge-exchange
 - Heavies
 - Solar ionization side
 - Convection E-fields
 - Alfvén wings?
- Occurs during enhanced magnetospheric plasma outflow event
- Plasma erosion:
 - Heavies: $\sim 4 \times 10^{25}$ ions/s
 - Light ions: $\sim 2 \times 10^{25}$ ions/s

T9 Plasma waves

UIOWA 20051227

Wave induced Plasma Escape

- [Dobe & Szego, JGR, 2005]
- Solar wind driven ion acoustic (lower hybrid) wave generation cause "enhanced drag" of cold ionospheric ions

Production of Heavy Organics in Titan's Ionosphere

From Simple to Complex

- The origin of Life!?
 - Atoms \Rightarrow **Pre-biotic** molecules \Rightarrow **Self-replicating** bio-molecules
 - Short RNA-strands that undergoes
 Molecular Evolution through
 Autocatalysis

Upper Atmospheric Organic Factory

- Driven by Energetic Radiation
 - Solar UV
 - Magnetospheric electrons
 - Break N₂ (covalent bond) & ionize
- N-radicals react with CH₄
 - Hydrocarbons (Ethane, Acetylene)
 - Nitriles (HCN-polymers, Adenine)
 - Diffuse downward, H escape
 - Organic Haze protect from UV

• No Oxygen!

- Few amino acids expected

Chemistry in Titan's ionosphere

Keller et al. 1998

T18, RPWS & INMS density profiles don't agree in the deep Titan's ionosphere...

1500 Altitude (km)

1600

1700 1800 1900 2000

1400

1000 1100 1200 1300

900

Lower Ionosphere dominated by >100 amu heavies

Conclusions:

- Lower ionosphere (<1050 km)</p>
 - At times dominated by >100 amu positive ions!
 - At times there exist also substantial amounts of negative ions!
- The deep Ionosphere of Titan is the main producer of heavy organic compounds for the aerosol haze and deposits on the surface
 - Key is the energetic EUV/particle precipitation together with a $\rm N_2$ and $\rm CH_4$ atmosphere.
 - We can learn early Earth chemistry from Titan studies
 - Add water and hydrolysis leads to pre-biotic building blocks
 - H_2CN^+ is dominant ionospheric species

T16: Negative Ions Signature in RPWS/LP?

CAPS/ELS (A. Coates) Negative Ion Densities T16: ~1000 cm⁻³ T18: ~200 cm⁻³ T17, T21: somewhat less T5 none (?)

-6

-8

-10

Any negatively charged component contributes $I = I_0(1 - \chi) \quad \text{for} \quad U = U_{bias} + U_{SC} \ge 0$ $I = I_0 \exp(-\chi) \quad \text{for} \quad U = U_{bias} + U_{SC} < 0$ where for charged dust $(T_{dust} << \frac{1}{2}m_{dust}v_{dust}^2)$ $I_0 = A_{LP}q_{dust}n_{dust} \frac{|v_{dust}|}{4}$ $\chi = 2e(U_{bias} + U_{SC})/m_{dust}v_{dust}^2 \quad << 1$ also

 $\exp(-\chi_{dust}) \approx 1$

i.e., charged dust don't affect the gradient, but give a constant ram flux

 $I_{dust} = A_{LP}q_{dust}n_{dust}\frac{|v_{dust}|}{4} \quad for \ all \ U \qquad (positive)$ This gives normaly a neglible contribution. However, the secondary electron yield from each dust hit is not :

 $I_{dust,sec} = Y_{yield} \bullet I_{dust} \approx 0.1 - 0.3 \text{ nA observed in E-ring}$ (negative)

